BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 36931888)

  • 1. Synthetic microbial communities (SynComs) of the human gut: design, assembly, and applications.
    van Leeuwen PT; Brul S; Zhang J; Wortel MT
    FEMS Microbiol Rev; 2023 Mar; 47(2):. PubMed ID: 36931888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic Communities of Gut Microbes for Basic Research and Translational Approaches in Animal Health and Nutrition.
    Jennings SAV; Clavel T
    Annu Rev Anim Biosci; 2024 Feb; 12():283-300. PubMed ID: 37963399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of ready-to-use freezer stocks of a synthetic microbial community for maize root colonization.
    Parnell JJ; Vintila S; Tang C; Wagner MR; Kleiner M
    Microbiol Spectr; 2024 Jan; 12(1):e0240123. PubMed ID: 38084978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for tailoring functional microbial synthetic communities.
    Jing J; Garbeva P; Raaijmakers JM; Medema MH
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38537571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Use of Defined Microbial Communities To Model Host-Microbe Interactions in the Human Gut.
    Elzinga J; van der Oost J; de Vos WM; Smidt H
    Microbiol Mol Biol Rev; 2019 May; 83(2):. PubMed ID: 30867232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Microbial Dynamics to Functionality in the Rhizosphere: A Systematic Review of the Opportunities With Synthetic Microbial Communities.
    Marín O; González B; Poupin MJ
    Front Plant Sci; 2021; 12():650609. PubMed ID: 34149752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fecal Microbiota Transplants for Inflammatory Bowel Disease Treatment: Synthetic- and Engineered Communities-Based Microbiota Transplants Are the Future.
    Khan R; Roy N; Ali H; Naeem M
    Gastroenterol Res Pract; 2022; 2022():9999925. PubMed ID: 35140783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Use of Synthetic Microbial Communities to Improve Plant Health.
    Martins SJ; Pasche J; Silva HAO; Selten G; Savastano N; Abreu LM; Bais HP; Garrett KA; Kraisitudomsook N; Pieterse CMJ; Cernava T
    Phytopathology; 2023 Aug; 113(8):1369-1379. PubMed ID: 36858028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in
    Wolinska KW; Vannier N; Thiergart T; Pickel B; Gremmen S; Piasecka A; Piślewska-Bednarek M; Nakano RT; Belkhadir Y; Bednarek P; Hacquard S
    Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34853170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potential impact of gut microbiota on your health:Current status and future challenges.
    Sirisinha S
    Asian Pac J Allergy Immunol; 2016 Dec; 34(4):249-264. PubMed ID: 28042926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection.
    Stecher B
    Microbiol Spectr; 2015 Jun; 3(3):. PubMed ID: 26185088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Microbiome to Traits: Designing Synthetic Microbial Communities for Improved Crop Resiliency.
    de Souza RSC; Armanhi JSL; Arruda P
    Front Plant Sci; 2020; 11():1179. PubMed ID: 32983187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic microbial consortia derived from rhizosphere soil protect wheat against a soilborne fungal pathogen.
    Yin C; Hagerty CH; Paulitz TC
    Front Microbiol; 2022; 13():908981. PubMed ID: 36118206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two human milk-like synthetic bacterial communities displayed contrasted impacts on barrier and immune responses in an intestinal quadricellular model.
    Le Bras C; Rault L; Jacquet N; Daniel N; Chuat V; Valence F; Bellanger A; Bousarghin L; Blat S; Le Loir Y; Le Huërou-Luron I; Even S
    ISME Commun; 2024 Jan; 4(1):ycad019. PubMed ID: 38415201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic Microbiomes on the Rise-Application in Deciphering the Role of Microbes in Host Health and Disease.
    Bolsega S; Bleich A; Basic M
    Nutrients; 2021 Nov; 13(11):. PubMed ID: 34836426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total Lipopolysaccharide from the Human Gut Microbiome Silences Toll-Like Receptor Signaling.
    d'Hennezel E; Abubucker S; Murphy LO; Cullen TW
    mSystems; 2017; 2(6):. PubMed ID: 29152585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From next-generation sequencing to systematic modeling of the gut microbiome.
    Ji B; Nielsen J
    Front Genet; 2015; 6():219. PubMed ID: 26157455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges & opportunities for phage-based in situ microbiome engineering in the gut.
    Voorhees PJ; Cruz-Teran C; Edelstein J; Lai SK
    J Control Release; 2020 Oct; 326():106-119. PubMed ID: 32569705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic ecology of the human gut microbiota.
    Vrancken G; Gregory AC; Huys GRB; Faust K; Raes J
    Nat Rev Microbiol; 2019 Dec; 17(12):754-763. PubMed ID: 31578461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution phenotyping of sorghum genotypic and phenotypic responses to low nitrogen and synthetic microbial communities.
    Chai YN; Ge Y; Stoerger V; Schachtman DP
    Plant Cell Environ; 2021 May; 44(5):1611-1626. PubMed ID: 33495990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.