These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36932067)

  • 1. Data integration across conditions improves turnover number estimates and metabolic predictions.
    Wendering P; Arend M; Razaghi-Moghadam Z; Nikoloski Z
    Nat Commun; 2023 Mar; 14(1):1485. PubMed ID: 36932067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximization of non-idle enzymes improves the coverage of the estimated maximal in vivo enzyme catalytic rates in Escherichia coli.
    Xu R; Razaghi-Moghadam Z; Nikoloski Z
    Bioinformatics; 2021 Nov; 37(21):3848-3855. PubMed ID: 34358300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models.
    Heckmann D; Lloyd CJ; Mih N; Ha Y; Zielinski DC; Haiman ZB; Desouki AA; Lercher MJ; Palsson BO
    Nat Commun; 2018 Dec; 9(1):5252. PubMed ID: 30531987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.
    Adadi R; Volkmer B; Milo R; Heinemann M; Shlomi T
    PLoS Comput Biol; 2012; 8(7):e1002575. PubMed ID: 22792053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interrogating the effect of enzyme kinetics on metabolism using differentiable constraint-based models.
    Wilken SE; Besançon M; Kratochvíl M; Foko Kuate CA; Trefois C; Gu W; Ebenhöh O
    Metab Eng; 2022 Nov; 74():72-82. PubMed ID: 36152931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ECMpy, a Simplified Workflow for Constructing Enzymatic Constrained Metabolic Network Model.
    Mao Z; Zhao X; Yang X; Zhang P; Du J; Yuan Q; Ma H
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structural property for reduction of biochemical networks.
    Küken A; Wendering P; Langary D; Nikoloski Z
    Sci Rep; 2021 Aug; 11(1):17415. PubMed ID: 34465818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis.
    Tian M; Reed JL
    Bioinformatics; 2018 Nov; 34(22):3882-3888. PubMed ID: 29878053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic construction of metabolic models with enzyme constraints.
    Bekiaris PS; Klamt S
    BMC Bioinformatics; 2020 Jan; 21(1):19. PubMed ID: 31937255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acorn: a grid computing system for constraint based modeling and visualization of the genome scale metabolic reaction networks via a web interface.
    Sroka J; Bieniasz-Krzywiec L; Gwóźdź S; Leniowski D; Lącki J; Markowski M; Avignone-Rossa C; Bushell ME; McFadden J; Kierzek AM
    BMC Bioinformatics; 2011 May; 12():196. PubMed ID: 21609434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermodynamically consistent metabolic models.
    Pandey V; Hadadi N; Hatzimanikatis V
    PLoS Comput Biol; 2019 May; 15(5):e1007036. PubMed ID: 31083653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints.
    Sánchez BJ; Zhang C; Nilsson A; Lahtvee PJ; Kerkhoven EJ; Nielsen J
    Mol Syst Biol; 2017 Aug; 13(8):935. PubMed ID: 28779005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome-guided parsimonious flux analysis improves predictions with metabolic networks in complex environments.
    Jenior ML; Moutinho TJ; Dougherty BV; Papin JA
    PLoS Comput Biol; 2020 Apr; 16(4):e1007099. PubMed ID: 32298268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro turnover numbers do not reflect in vivo activities of yeast enzymes.
    Chen Y; Nielsen J
    Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34341111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving flux predictions by integrating data from multiple strains.
    Long MR; Reed JL
    Bioinformatics; 2017 Mar; 33(6):893-900. PubMed ID: 27998937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic reaction-diffusion simulation of enzyme compartmentalization reveals improved catalytic efficiency for a synthetic metabolic pathway.
    Conrado RJ; Mansell TJ; Varner JD; DeLisa MP
    Metab Eng; 2007 Jul; 9(4):355-63. PubMed ID: 17601761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing Escherichia coli metabolism models and simulation approaches in phenotype predictions: Validation against experimental data.
    Costa RS; Vinga S
    Biotechnol Prog; 2018 Nov; 34(6):1344-1354. PubMed ID: 30294889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0.
    Domenzain I; Sánchez B; Anton M; Kerkhoven EJ; Millán-Oropeza A; Henry C; Siewers V; Morrissey JP; Sonnenschein N; Nielsen J
    Nat Commun; 2022 Jun; 13(1):3766. PubMed ID: 35773252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flux-based hierarchical organization of Escherichia coli's metabolic network.
    Robaina-Estévez S; Nikoloski Z
    PLoS Comput Biol; 2020 Apr; 16(4):e1007832. PubMed ID: 32310959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic profiling of metabolic specialists demonstrates stability and consistency of in vivo enzyme turnover numbers.
    Heckmann D; Campeau A; Lloyd CJ; Phaneuf PV; Hefner Y; Carrillo-Terrazas M; Feist AM; Gonzalez DJ; Palsson BO
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):23182-23190. PubMed ID: 32873645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.