These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36932071)

  • 21. Localisation of vibrational modes in high-entropy oxides.
    Wilson CM; Ganesh R; Crandles DA
    J Phys Condens Matter; 2024 Apr; 36(29):. PubMed ID: 38437726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-entropy oxides: an emerging anode material for lithium-ion batteries.
    Zou X; Zhang YR; Huang ZP; Yue K; Guo ZH
    Chem Commun (Camb); 2023 Nov; 59(91):13535-13550. PubMed ID: 37877745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A High Entropy Oxide Designed to Catalyze CO Oxidation Without Precious Metals.
    Riley C; De La Riva A; Park JE; Percival SJ; Benavidez A; Coker EN; Aidun RE; Paisley EA; Datye A; Chou SS
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8120-8128. PubMed ID: 33565850
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced Exchange Bias in Epitaxial High-Entropy Oxide Heterostructures.
    Wang H; Huang H; Feng Y; Ku YC; Liu CE; Chen S; Farhan A; Piamonteze C; Lu Y; Tang Y; Wei J; Chen L; Chang CF; Kuo CY; Chen Z
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58643-58650. PubMed ID: 38062584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface Phase Conversion in a High-Entropy Layered Oxide Cathode Material.
    Zheng Q; Ren Z; Zhang Y; Qin T; Qi J; Jia H; Jiang L; Li L; Liu X; Chen L
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4643-4651. PubMed ID: 36630692
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomic Scale Responses of High Entropy Oxides to Redox Environments.
    Huang Z; Wang L; Li T; Venkatraman K; He Y; Polo-Garzon F; Smith J; Du Y; Hu L; Wu Z; Jiang DE; Chi M
    Nano Lett; 2024 Sep; 24(37):11537-11543. PubMed ID: 39236216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mesoscale Battery Science: The Behavior of Electrode Particles Caught on a Multispectral X-ray Camera.
    Wei C; Xia S; Huang H; Mao Y; Pianetta P; Liu Y
    Acc Chem Res; 2018 Oct; 51(10):2484-2492. PubMed ID: 29889493
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Particle-size effects on the entropy behavior of a LixFePO4 electrode.
    Kai K; Kobayashi Y; Miyashiro H; Oyama G; Nishimura S; Okubo M; Yamada A
    Chemphyschem; 2014 Jul; 15(10):2156-61. PubMed ID: 24789512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics and properties of nano-LiCoO
    Brog JP; Crochet A; Seydoux J; Clift MJD; Baichette B; Maharajan S; Barosova H; Brodard P; Spodaryk M; Züttel A; Rothen-Rutishauser B; Kwon NH; Fromm KM
    J Nanobiotechnology; 2017 Aug; 15(1):58. PubMed ID: 28830490
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid Synthesis of High-Entropy Oxide Microparticles.
    Dong Q; Hong M; Gao J; Li T; Cui M; Li S; Qiao H; Brozena AH; Yao Y; Wang X; Chen G; Luo J; Hu L
    Small; 2022 Mar; 18(11):e2104761. PubMed ID: 35049145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MoS
    Ette PM; Chithambararaj A; Prakash AS; Ramesha K
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11511-11521. PubMed ID: 32053336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Porous Fe
    Jiang T; Bu F; Feng X; Shakir I; Hao G; Xu Y
    ACS Nano; 2017 May; 11(5):5140-5147. PubMed ID: 28457124
    [TBL] [Abstract][Full Text] [Related]  

  • 34. X-ray Nano-computed Tomography of Electrochemical Conversion in Lithium-ion Battery.
    Di Lecce D; Levchenko S; Iacoviello F; Brett DJL; Shearing PR; Hassoun J
    ChemSusChem; 2019 Aug; 12(15):3550-3561. PubMed ID: 31169357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Entropy Stabilization Effect and Oxygen Vacancies Enabling Spinel Oxide Highly Reversible Lithium-Ion Storage.
    Zhao J; Yang X; Huang Y; Du F; Zeng Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58674-58681. PubMed ID: 34873905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding the Critical Role of the Ag Nanophase in Boosting the Initial Reversibility of Transition Metal Oxide Anodes for Lithium-Ion Batteries.
    Lee D; Wu M; Kim DH; Chae C; Cho MK; Kim JY; Lee SS; Choi S; Choi Y; Shin TJ; Chung KY; Jeong S; Moon J
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21715-21722. PubMed ID: 28560865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visualizing the Sensitive Lithium with Atomic Precision: Cryogenic Electron Microscopy for Batteries.
    Liu Y; Ju Z; Zhang B; Wang Y; Nai J; Liu T; Tao X
    Acc Chem Res; 2021 May; 54(9):2088-2099. PubMed ID: 33856759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetically Accelerated Lithium Storage in High-Entropy (LiMgCoNiCuZn)O Enabled By Oxygen Vacancies.
    Liu X; Xing Y; Xu K; Zhang H; Gong M; Jia Q; Zhang S; Lei W
    Small; 2022 May; 18(18):e2200524. PubMed ID: 35362260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes.
    Jiang J; Li Y; Liu J; Huang X
    Nanoscale; 2011 Jan; 3(1):45-58. PubMed ID: 20978657
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermochemistry of cation disordered Li ion battery cathode materials, (M' = Nb and Ta, M'' = Mn and Fe).
    Subramani T; Navrotsky A
    RSC Adv; 2020 Feb; 10(11):6540-6546. PubMed ID: 35495992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.