These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36932310)

  • 1. Isolation, purification, and identification of antifungal protein produced by Bacillus subtilis SL-44 and anti-fungal resistance in apple.
    Chen W; Wu Z; He Y
    Environ Sci Pollut Res Int; 2023 May; 30(22):62080-62093. PubMed ID: 36932310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation, heterologous expression, and purification of a novel antifungal protein from Bacillus subtilis strain Z-14.
    Zhang X; Guo X; Wu C; Li C; Zhang D; Zhu B
    Microb Cell Fact; 2020 Nov; 19(1):214. PubMed ID: 33228718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel antifungal protein of Bacillus subtilis B25.
    Tan Z; Lin B; Zhang R
    Springerplus; 2013; 2():543. PubMed ID: 24255843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides Penz.
    Jin P; Wang H; Tan Z; Xuan Z; Dahar GY; Li QX; Miao W; Liu W
    Pestic Biochem Physiol; 2020 Feb; 163():102-107. PubMed ID: 31973845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifungal effect of volatile organic compounds produced by Streptomyces salmonis PSRDC-09 against anthracnose pathogen Colletotrichum gloeosporioides PSU-03 in postharvest chili fruit.
    Boukaew S; Cheirsilp B; Prasertsan P; Yossan S
    J Appl Microbiol; 2021 Sep; 131(3):1452-1463. PubMed ID: 33570812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifungal Mechanism of Volatile Organic Compounds Produced by
    Wang K; Qin Z; Wu S; Zhao P; Zhen C; Gao H
    J Agric Food Chem; 2021 May; 69(17):5267-5278. PubMed ID: 33899461
    [No Abstract]   [Full Text] [Related]  

  • 7. Purification and characterization of a potential antifungal protein from Bacillus subtilis E1R-J against Valsa mali.
    Wang NN; Yan X; Gao XN; Niu HJ; Kang ZS; Huang LL
    World J Microbiol Biotechnol; 2016 Apr; 32(4):63. PubMed ID: 26925625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908.
    Kim PI; Chung KC
    FEMS Microbiol Lett; 2004 May; 234(1):177-83. PubMed ID: 15109737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postharvest Biological Control of Colletotrichum acutatum on Apple by Bacillus subtilis HM1 and the Structural Identification of Antagonists.
    Kim HM; Lee KJ; Chae JC
    J Microbiol Biotechnol; 2015 Nov; 25(11):1954-9. PubMed ID: 26428548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target Mechanism of Iturinic Lipopeptide on Differential Expression Patterns of Defense-Related Genes against
    Park JS; Ryu GR; Kang BR
    Plants (Basel); 2022 May; 11(9):. PubMed ID: 35567268
    [No Abstract]   [Full Text] [Related]  

  • 11. Antifungal Activity of Cyclic Tetrapeptide from
    Choub V; Maung CEH; Won SJ; Moon JH; Kim KY; Han YS; Cho JY; Ahn YS
    Pathogens; 2021 Feb; 10(2):. PubMed ID: 33672094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides.
    Kim PI; Ryu J; Kim YH; Chi YT
    J Microbiol Biotechnol; 2010 Jan; 20(1):138-45. PubMed ID: 20134245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1.
    Ashwini N; Srividya S
    3 Biotech; 2014 Apr; 4(2):127-136. PubMed ID: 28324440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29.
    Li J; Yang Q; Zhao LH; Zhang SM; Wang YX; Zhao XY
    J Zhejiang Univ Sci B; 2009 Apr; 10(4):264-72. PubMed ID: 19353744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of siderophilic biocontrol strain SL-44 combined with whole genome.
    Xiang H; He Y; Wang X; Wang J; Li T; Zhu S; Zhang Z; Xu X; Wu Z
    Environ Sci Pollut Res Int; 2023 May; 30(22):62104-62120. PubMed ID: 36940032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of an antifungal protein from Bacillus licheniformis HS10.
    Wang Z; Wang Y; Zheng L; Yang X; Liu H; Guo J
    Biochem Biophys Res Commun; 2014 Nov; 454(1):48-52. PubMed ID: 25445597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3.
    Sen S; Borah SN; Bora A; Deka S
    Microb Cell Fact; 2017 May; 16(1):95. PubMed ID: 28558761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of the rubber anthracnose fungus Colletotrichum gloeosporioides using culture filtrate extract from Streptomyces deccanensis QY-3.
    Gu L; Zhang K; Zhang N; Li X; Liu Z
    Antonie Van Leeuwenhoek; 2020 Nov; 113(11):1573-1585. PubMed ID: 32815093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic control of α-farnesene production in apple fruit and its role in fungal pathogenesis.
    Souleyre EJF; Bowen JK; Matich AJ; Tomes S; Chen X; Hunt MB; Wang MY; Ileperuma NR; Richards K; Rowan DD; Chagné D; Atkinson RG
    Plant J; 2019 Dec; 100(6):1148-1162. PubMed ID: 31436867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Purification and identification of iturin A from Bacillus subtilis JA by electrospray ionization mass spectrometry].
    Chen H; Yuan C; Cai K; Zheng Z; Yu Z
    Wei Sheng Wu Xue Bao; 2008 Jan; 48(1):116-20. PubMed ID: 18338587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.