These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 36932489)

  • 1. Giant slip length at a supercooled liquid-solid interface.
    Lafon S; Chennevière A; Restagno F; Merabia S; Joly L
    Phys Rev E; 2023 Feb; 107(2-2):025101. PubMed ID: 36932489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast increase of nanofluidic slip in supercooled water: the key role of dynamics.
    Herrero C; Tocci G; Merabia S; Joly L
    Nanoscale; 2020 Oct; 12(39):20396-20403. PubMed ID: 33021296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between induced fluid structure and boundary slip in nanoscale polymer films.
    Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051603. PubMed ID: 21230484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of supercooled water in confined geometry.
    Bergman R; Swenson J
    Nature; 2000 Jan; 403(6767):283-6. PubMed ID: 10659841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Solid Wall Properties in the Interface Slip of Liquid in Nanochannels.
    Gao W; Zhang X; Han X; Shen C
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30558345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slip boundary conditions for shear flow of polymer melts past atomically flat surfaces.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041606. PubMed ID: 18517634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-Controlled Slip of Polymer Melts on Ideal Substrates.
    Hénot M; Grzelka M; Zhang J; Mariot S; Antoniuk I; Drockenmuller E; Léger L; Restagno F
    Phys Rev Lett; 2018 Oct; 121(17):177802. PubMed ID: 30411954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear rate threshold for the boundary slip in dense polymer films.
    Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031608. PubMed ID: 19905124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wall slip for complex liquids - Phenomenon and its causes.
    Malkin AY; Patlazhan SA
    Adv Colloid Interface Sci; 2018 Jul; 257():42-57. PubMed ID: 29934140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inherent-state melting and the onset of glassy dynamics in two-dimensional supercooled liquids.
    Fraggedakis D; Hasyim MR; Mandadapu KK
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2209144120. PubMed ID: 37000846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of viscous heating and wall-fluid interaction energy on rate-dependent slip behavior of simple fluids.
    Bao L; Priezjev NV; Hu H; Luo K
    Phys Rev E; 2017 Sep; 96(3-1):033110. PubMed ID: 29346922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity.
    Matsuoka H
    J Chem Phys; 2012 Nov; 137(20):204506. PubMed ID: 23206018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slip length crossover on a graphene surface.
    Liang Z; Keblinski P
    J Chem Phys; 2015 Apr; 142(13):134701. PubMed ID: 25854252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-dependent slip length for water and electrolyte solution.
    Li H; Xu Z; Ma M
    J Colloid Interface Sci; 2023 Apr; 636():512-517. PubMed ID: 36652826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate-dependent slip boundary conditions for simple fluids.
    Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051605. PubMed ID: 17677076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slip effects in polymer thin films.
    Bäumchen O; Jacobs K
    J Phys Condens Matter; 2010 Jan; 22(3):033102. PubMed ID: 21386275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscosity-dependent liquid slip at molecularly smooth hydrophobic surfaces.
    McBride SP; Law BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):060601. PubMed ID: 20365109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence between velocity slip and temperature jump in shear flows.
    Sun J; Wang W; Wang HS
    J Chem Phys; 2013 Jun; 138(23):234703. PubMed ID: 23802972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Layering and Supporting Substrate on Liquid Slip at the Single-Layer Graphene Interface.
    Greenwood G; Kim JM; Zheng Q; Nahid SM; Nam S; Espinosa-Marzal RM
    ACS Nano; 2021 Jun; 15(6):10095-10106. PubMed ID: 34114798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.