These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36932528)

  • 1. Percolation and dissolution of Borromean networks.
    Ferschweiler DG; Blair R; Klotz AR
    Phys Rev E; 2023 Feb; 107(2-1):024304. PubMed ID: 36932528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On Borromean links and related structures.
    O'Keeffe M; Treacy MMJ
    Acta Crystallogr A Found Adv; 2021 Sep; 77(Pt 5):379-391. PubMed ID: 34473093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Borromean rings redux. A missing link found - a Borromean triplet of Borromean triplets.
    O'Keeffe M; Treacy MMJ
    Acta Crystallogr A Found Adv; 2023 Mar; 79(Pt 2):217-219. PubMed ID: 36862046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standard and inverse bond percolation of straight rigid rods on square lattices.
    Ramirez LS; Centres PM; Ramirez-Pastor AJ
    Phys Rev E; 2018 Apr; 97(4-1):042113. PubMed ID: 29758718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Borromean Rings Based on Half-Sandwich Organometallic Rectangles.
    Lu Y; Zhang HN; Jin GX
    Acc Chem Res; 2018 Sep; 51(9):2148-2158. PubMed ID: 29987929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An infinite chainmail of M6L6 metallacycles featuring multiple Borromean links.
    Thorp-Greenwood FL; Kulak AN; Hardie MJ
    Nat Chem; 2015 Jun; 7(6):526-31. PubMed ID: 25991533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Braiding with Borromean Rings in (3+1)-Dimensional Spacetime.
    Chan APO; Ye P; Ryu S
    Phys Rev Lett; 2018 Aug; 121(6):061601. PubMed ID: 30141671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale borromean rings.
    Cantrill SJ; Chichak KS; Peters AJ; Stoddart JF
    Acc Chem Res; 2005 Jan; 38(1):1-9. PubMed ID: 15654731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimer covering and percolation frustration.
    Haji-Akbari A; Haji-Akbari N; Ziff RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032134. PubMed ID: 26465453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agglomerative percolation on bipartite networks: nonuniversal behavior due to spontaneous symmetry breaking at the percolation threshold.
    Lau HW; Paczuski M; Grassberger P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011118. PubMed ID: 23005379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standard and inverse site percolation of straight rigid rods on triangular lattices: Isotropic and perfectly oriented deposition and removal.
    Ramirez LS; Pasinetti PM; Lebrecht W; Ramirez-Pastor AJ
    Phys Rev E; 2021 Jul; 104(1-1):014101. PubMed ID: 34412197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational Construction of Borromean Linked Crystalline Organic Polymers.
    Guo X; Lin E; Gao J; Mao T; Yan D; Cheng P; Ma S; Chen Y; Zhang Z
    Angew Chem Int Ed Engl; 2021 Feb; 60(6):2974-2979. PubMed ID: 33210805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of molecular Borromean rings from bimetallic coordination rectangles.
    Huang SL; Lin YJ; Li ZH; Jin GX
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11218-22. PubMed ID: 25168170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Irreversible bilayer adsorption of straight semirigid rods on two-dimensional square lattices: Jamming and percolation properties.
    De La Cruz Félix N; Centres PM; Ramirez-Pastor AJ
    Phys Rev E; 2020 Jul; 102(1-1):012153. PubMed ID: 32795003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Percolation of spatially constrained Erdős-Rényi networks with degree correlations.
    Schmeltzer C; Soriano J; Sokolov IM; Rüdiger S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012116. PubMed ID: 24580181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spanning connectivity in a multilayer network and its relationship to site-bond percolation.
    Guha S; Towsley D; Nain P; Çapar Ç; Swami A; Basu P
    Phys Rev E; 2016 Jun; 93(6):062310. PubMed ID: 27415283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Percolation phase transition by removal of k^{2}-mers from fully occupied lattices.
    Ramirez LS; Centres PM; Ramirez-Pastor AJ
    Phys Rev E; 2019 Sep; 100(3-1):032105. PubMed ID: 31640014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site percolation on square and simple cubic lattices with extended neighborhoods and their continuum limit.
    Xun Z; Hao D; Ziff RM
    Phys Rev E; 2021 Feb; 103(2-1):022126. PubMed ID: 33735955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bond percolation on simple cubic lattices with extended neighborhoods.
    Xun Z; Ziff RM
    Phys Rev E; 2020 Jul; 102(1-1):012102. PubMed ID: 32795057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Percolation of interdependent networks with intersimilarity.
    Hu Y; Zhou D; Zhang R; Han Z; Rozenblat C; Havlin S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052805. PubMed ID: 24329316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.