These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36932541)

  • 1. Particle acceleration in colliding flows: Binary star winds and other double-shock structures.
    Malkov M; Lemoine M
    Phys Rev E; 2023 Feb; 107(2-2):025201. PubMed ID: 36932541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear Monte Carlo model of superdiffusive shock acceleration with magnetic field amplification.
    Bykov AM; Ellison DC; Osipov SM
    Phys Rev E; 2017 Mar; 95(3-1):033207. PubMed ID: 28415375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autogenous and efficient acceleration of energetic ions upstream of Earth's bow shock.
    Turner DL; Wilson LB; Liu TZ; Cohen IJ; Schwartz SJ; Osmane A; Fennell JF; Clemmons JH; Blake JB; Westlake J; Mauk BH; Jaynes AN; Leonard T; Baker DN; Strangeway RJ; Russell CT; Gershman DJ; Avanov L; Giles BL; Torbert RB; Broll J; Gomez RG; Fuselier SA; Burch JL
    Nature; 2018 Sep; 561(7722):206-210. PubMed ID: 30209369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast Particle Acceleration in 3D Hybrid Simulations of Quasiperpendicular Shocks.
    Orusa L; Caprioli D
    Phys Rev Lett; 2023 Sep; 131(9):095201. PubMed ID: 37721847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct evidence of nonstationary collisionless shocks in space plasmas.
    Dimmock AP; Russell CT; Sagdeev RZ; Krasnoselskikh V; Walker SN; Carr C; Dandouras I; Escoubet CP; Ganushkina N; Gedalin M; Khotyaintsev YV; Aryan H; Pulkkinen TI; Balikhin MA
    Sci Adv; 2019 Feb; 5(2):eaau9926. PubMed ID: 30820454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Downstream high-speed plasma jet generation as a direct consequence of shock reformation.
    Raptis S; Karlsson T; Vaivads A; Pollock C; Plaschke F; Johlander A; Trollvik H; Lindqvist PA
    Nat Commun; 2022 Feb; 13(1):598. PubMed ID: 35105885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic Alfvén wave instability driven by a field-aligned current in high-β plasmas.
    Chen L; Wu DJ; Hua YP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046406. PubMed ID: 22181282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unlimited relativistic shock surfing acceleration.
    Ucer D; Shapiro VD
    Phys Rev Lett; 2001 Aug; 87(7):075001. PubMed ID: 11497896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase space transport in the interaction between shocks and plasma turbulence.
    Trotta D; Valentini F; Burgess D; Servidio S
    Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 34006642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasma physics. Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave.
    Matsumoto Y; Amano T; Kato TN; Hoshino M
    Science; 2015 Feb; 347(6225):974-8. PubMed ID: 25722406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The microphysics of collisionless shock waves.
    Marcowith A; Bret A; Bykov A; Dieckman ME; Drury LO; Lembège B; Lemoine M; Morlino G; Murphy G; Pelletier G; Plotnikov I; Reville B; Riquelme M; Sironi L; Novo AS
    Rep Prog Phys; 2016 Apr; 79(4):046901. PubMed ID: 27007555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pitch-Angle Anisotropy Controls Particle Acceleration and Cooling in Radiative Relativistic Plasma Turbulence.
    Comisso L; Sironi L
    Phys Rev Lett; 2021 Dec; 127(25):255102. PubMed ID: 35029444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron energization dynamics in interaction of self-generated magnetic vortices in upstream of collisionless electron/ion shocks.
    Naseri N; Bochkarev SG; Bychenkov VY; Khudik V; Shvets G
    Sci Rep; 2022 May; 12(1):7327. PubMed ID: 35513469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy spectrum of particles accelerated in relativistic collisionless shocks.
    Keshet U; Waxman E
    Phys Rev Lett; 2005 Mar; 94(11):111102. PubMed ID: 15903842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulations of collisionless perpendicular shocks in partially ionized plasmas.
    Ohira Y
    Phys Rev Lett; 2013 Dec; 111(24):245002. PubMed ID: 24483669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromagnetic field generation in the downstream of electrostatic shocks due to electron trapping.
    Stockem A; Grismayer T; Fonseca RA; Silva LO
    Phys Rev Lett; 2014 Sep; 113(10):105002. PubMed ID: 25238365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion acceleration at two collisionless shocks in a multicomponent plasma.
    Kumar R; Sakawa Y; Sano T; Döhl LNK; Woolsey N; Morace A
    Phys Rev E; 2021 Apr; 103(4-1):043201. PubMed ID: 34005941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory.
    Schaeffer DB; Fox W; Haberberger D; Fiksel G; Bhattacharjee A; Barnak DH; Hu SX; Germaschewski K
    Phys Rev Lett; 2017 Jul; 119(2):025001. PubMed ID: 28753335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical Mach number for electron injection in collisionless shocks.
    Amano T; Hoshino M
    Phys Rev Lett; 2010 May; 104(18):181102. PubMed ID: 20482163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-layer shocks in a magnetized quantum plasma.
    Misra AP; Samanta S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):037401. PubMed ID: 21230218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.