These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 36932541)
1. Particle acceleration in colliding flows: Binary star winds and other double-shock structures. Malkov M; Lemoine M Phys Rev E; 2023 Feb; 107(2-2):025201. PubMed ID: 36932541 [TBL] [Abstract][Full Text] [Related]
2. Nonlinear Monte Carlo model of superdiffusive shock acceleration with magnetic field amplification. Bykov AM; Ellison DC; Osipov SM Phys Rev E; 2017 Mar; 95(3-1):033207. PubMed ID: 28415375 [TBL] [Abstract][Full Text] [Related]
9. Phase space transport in the interaction between shocks and plasma turbulence. Trotta D; Valentini F; Burgess D; Servidio S Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 34006642 [TBL] [Abstract][Full Text] [Related]
10. Plasma physics. Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave. Matsumoto Y; Amano T; Kato TN; Hoshino M Science; 2015 Feb; 347(6225):974-8. PubMed ID: 25722406 [TBL] [Abstract][Full Text] [Related]
11. The microphysics of collisionless shock waves. Marcowith A; Bret A; Bykov A; Dieckman ME; Drury LO; Lembège B; Lemoine M; Morlino G; Murphy G; Pelletier G; Plotnikov I; Reville B; Riquelme M; Sironi L; Novo AS Rep Prog Phys; 2016 Apr; 79(4):046901. PubMed ID: 27007555 [TBL] [Abstract][Full Text] [Related]
12. Pitch-Angle Anisotropy Controls Particle Acceleration and Cooling in Radiative Relativistic Plasma Turbulence. Comisso L; Sironi L Phys Rev Lett; 2021 Dec; 127(25):255102. PubMed ID: 35029444 [TBL] [Abstract][Full Text] [Related]
13. Electron energization dynamics in interaction of self-generated magnetic vortices in upstream of collisionless electron/ion shocks. Naseri N; Bochkarev SG; Bychenkov VY; Khudik V; Shvets G Sci Rep; 2022 May; 12(1):7327. PubMed ID: 35513469 [TBL] [Abstract][Full Text] [Related]
14. Energy spectrum of particles accelerated in relativistic collisionless shocks. Keshet U; Waxman E Phys Rev Lett; 2005 Mar; 94(11):111102. PubMed ID: 15903842 [TBL] [Abstract][Full Text] [Related]
15. Simulations of collisionless perpendicular shocks in partially ionized plasmas. Ohira Y Phys Rev Lett; 2013 Dec; 111(24):245002. PubMed ID: 24483669 [TBL] [Abstract][Full Text] [Related]
16. Electromagnetic field generation in the downstream of electrostatic shocks due to electron trapping. Stockem A; Grismayer T; Fonseca RA; Silva LO Phys Rev Lett; 2014 Sep; 113(10):105002. PubMed ID: 25238365 [TBL] [Abstract][Full Text] [Related]
17. Ion acceleration at two collisionless shocks in a multicomponent plasma. Kumar R; Sakawa Y; Sano T; Döhl LNK; Woolsey N; Morace A Phys Rev E; 2021 Apr; 103(4-1):043201. PubMed ID: 34005941 [TBL] [Abstract][Full Text] [Related]
18. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory. Schaeffer DB; Fox W; Haberberger D; Fiksel G; Bhattacharjee A; Barnak DH; Hu SX; Germaschewski K Phys Rev Lett; 2017 Jul; 119(2):025001. PubMed ID: 28753335 [TBL] [Abstract][Full Text] [Related]
19. A critical Mach number for electron injection in collisionless shocks. Amano T; Hoshino M Phys Rev Lett; 2010 May; 104(18):181102. PubMed ID: 20482163 [TBL] [Abstract][Full Text] [Related]
20. Double-layer shocks in a magnetized quantum plasma. Misra AP; Samanta S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):037401. PubMed ID: 21230218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]