These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 36932574)
1. Swelling and shrinking of two opposing polyelectrolyte brushes. Duan M; Chen G Phys Rev E; 2023 Feb; 107(2-1):024502. PubMed ID: 36932574 [TBL] [Abstract][Full Text] [Related]
2. Anomalous Shrinking-Swelling of Nanoconfined End-Charged Polyelectrolyte Brushes: Interplay of Confinement and Electrostatic Effects. Chen G; Das S J Phys Chem B; 2016 Jul; 120(27):6848-57. PubMed ID: 27322913 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes. Chen G; Das S Electrophoresis; 2017 Mar; 38(5):720-729. PubMed ID: 27897317 [TBL] [Abstract][Full Text] [Related]
4. Ionic current in nanochannels grafted with pH-responsive polyelectrolyte brushes modeled using augmented strong stretching theory. Sachar HS; Sivasankar VS; Etha SA; Chen G; Das S Electrophoresis; 2020 Apr; 41(7-8):554-561. PubMed ID: 31541559 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and swelling behavior of pH-responsive polybase brushes. Sanjuan S; Perrin P; Pantoustier N; Tran Y Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342 [TBL] [Abstract][Full Text] [Related]
6. Strong stretching theory for pH-responsive polyelectrolyte brushes in large salt concentrations. Etha SA; Sivasankar VS; Sachar HS; Das S Phys Chem Chem Phys; 2020 Jun; 22(24):13536-13553. PubMed ID: 32510082 [TBL] [Abstract][Full Text] [Related]
7. Unveiling the Role of Electrostatic Forces on Attraction between Opposing Polyelectrolyte Brushes. Prusty D; Gallegos A; Wu J Langmuir; 2024 Jan; 40(4):2064-2078. PubMed ID: 38236763 [TBL] [Abstract][Full Text] [Related]
8. Polyelectrolyte brushes: theory, modelling, synthesis and applications. Das S; Banik M; Chen G; Sinha S; Mukherjee R Soft Matter; 2015 Nov; 11(44):8550-83. PubMed ID: 26399305 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of Raspberry-like Nanoparticles via Surface Grafting of Positively Charged Polyelectrolyte Brushes: Colloidal Stability and Surface Properties. Aldakkan BS; Chalmpes N; Qi G; Hammami MA; Kanj MY; Giannelis EP Langmuir; 2024 Mar; 40(11):5837-5849. PubMed ID: 38457691 [TBL] [Abstract][Full Text] [Related]
10. Specific Ion and Electric Field Controlled Diverse Ion Distribution and Electroosmotic Transport in a Polyelectrolyte Brush Grafted Nanochannel. Pial TH; Das S J Phys Chem B; 2022 Dec; 126(49):10543-10553. PubMed ID: 36454705 [TBL] [Abstract][Full Text] [Related]
11. Effect of Counterion Valence on Conformational Behavior of Spherical Polyelectrolyte Brushes Confined between Two Parallel Walls. Li L; Cao Q; Zuo C Polymers (Basel); 2018 Mar; 10(4):. PubMed ID: 30966398 [TBL] [Abstract][Full Text] [Related]
12. Polyelectrolyte brush bilayers in weak interpenetration regime: Scaling theory and molecular dynamics simulations. Desai PR; Sinha S; Das S Phys Rev E; 2018 Mar; 97(3-1):032503. PubMed ID: 29776032 [TBL] [Abstract][Full Text] [Related]
13. Electrokinetic energy conversion in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory. Sachar HS; Sivasankar VS; Das S Soft Matter; 2019 Jul; 15(29):5973-5986. PubMed ID: 31290913 [TBL] [Abstract][Full Text] [Related]
14. Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime. Li H; Chen G; Das S Colloids Surf B Biointerfaces; 2016 Nov; 147():180-190. PubMed ID: 27543690 [TBL] [Abstract][Full Text] [Related]
15. Lubrication by Polyelectrolyte Brushes. Zhulina EB; Rubinstein M Macromolecules; 2014 Aug; 47(16):5825-5838. PubMed ID: 25180021 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous Energy Generation and Flow Enhancement ( Sachar HS; Pial TH; Sivasankar VS; Das S ACS Nano; 2021 Nov; 15(11):17337-17347. PubMed ID: 34605243 [TBL] [Abstract][Full Text] [Related]
17. Effect of counterions on the swelling of spherical polyelectrolyte brushes. Mei Y; Ballauff M Eur Phys J E Soft Matter; 2005 Mar; 16(3):341-9. PubMed ID: 15685435 [TBL] [Abstract][Full Text] [Related]
18. Friction and adhesion control between adsorbed layers of polyelectrolyte brush-grafted nanoparticles via pH-triggered bridging interactions. Riley JK; Matyjaszewski K; Tilton RD J Colloid Interface Sci; 2018 Sep; 526():114-123. PubMed ID: 29723792 [TBL] [Abstract][Full Text] [Related]
20. Effects of chain stiffness and salt concentration on responses of polyelectrolyte brushes under external electric field. Cao Q; Zuo C; Li L; Yan G Biomicrofluidics; 2011 Dec; 5(4):44119-4411912. PubMed ID: 22685503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]