These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36932584)

  • 1. Imprints of log-periodicity in thermoacoustic systems close to lean blowout.
    Banerjee A; Pavithran I; Sujith RI
    Phys Rev E; 2023 Feb; 107(2-1):024219. PubMed ID: 36932584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recurrence networks to study dynamical transitions in a turbulent combustor.
    Godavarthi V; Unni VR; Gopalakrishnan EA; Sujith RI
    Chaos; 2017 Jun; 27(6):063113. PubMed ID: 28679226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of recurrence quantification analysis for early detection of lean blowout in a swirl-stabilized dump combustor.
    De S; Bhattacharya A; Mondal S; Mukhopadhyay A; Sen S
    Chaos; 2020 Apr; 30(4):043115. PubMed ID: 32357653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early detection of lean blowout using recurrence network for varying degrees of premixedness.
    Bhattacharya A; De S; Mondal S; Mukhopadhyay A; Sen S
    Chaos; 2022 Jun; 32(6):063105. PubMed ID: 35778125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and control of combustion instability based on the concept of dynamical system theory.
    Gotoda H; Shinoda Y; Kobayashi M; Okuno Y; Tachibana S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022910. PubMed ID: 25353548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation of limit cycle oscillations in a turbulent thermoacoustic system via delayed acoustic self-feedback.
    Sahay A; Kushwaha A; Pawar SA; P R M; Dhadphale JM; Sujith RI
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Log-periodic quantum magneto-oscillations and discrete-scale invariance in topological material HfTe
    Wang H; Liu Y; Liu Y; Xi C; Wang J; Liu J; Wang Y; Li L; Lau SP; Tian M; Yan J; Mandrus D; Dai JY; Liu H; Xie X; Wang J
    Natl Sci Rev; 2019 Oct; 6(5):914-920. PubMed ID: 34691952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Log-periodic route to fractal functions.
    Gluzman S; Sornette D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036142. PubMed ID: 11909200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extreme COVID-19 waves reveal hyperexponential growth and finite-time singularity.
    Pavithran I; Sujith RI
    Chaos; 2022 Apr; 32(4):041104. PubMed ID: 35489852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural ODE to model and prognose thermoacoustic instability.
    Dhadphale JM; Unni VR; Saha A; Sujith RI
    Chaos; 2022 Jan; 32(1):013131. PubMed ID: 35105133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of degeneration process in combustion instability based on dynamical systems theory.
    Gotoda H; Okuno Y; Hayashi K; Tachibana S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052906. PubMed ID: 26651761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flame blowout: Transition to an absorbing phase.
    Unni VR; Chaudhuri S; Sujith RI
    Chaos; 2018 Nov; 28(11):113121. PubMed ID: 30501208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mean-field model of synchronization for open-loop, swirl controlled thermoacoustic system.
    Singh S; Kumar Dutta A; Dhadphale JM; Roy A; Sujith RI; Chaudhuri S
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Condensation in the phase space and network topology during transition from chaos to order in turbulent thermoacoustic systems.
    Tandon S; Sujith RI
    Chaos; 2021 Apr; 31(4):043126. PubMed ID: 34251230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-order modeling of the mutual synchronization between two turbulent thermoacoustic oscillators.
    Guan Y; Moon K; Kim KT; Li LKB
    Phys Rev E; 2021 Aug; 104(2-1):024216. PubMed ID: 34525572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bursting during intermittency route to thermoacoustic instability: Effects of slow-fast dynamics.
    Tandon S; Pawar SA; Banerjee S; Varghese AJ; Durairaj P; Sujith RI
    Chaos; 2020 Oct; 30(10):103112. PubMed ID: 33138448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are Bitcoin bubbles predictable? Combining a generalized Metcalfe's Law and the Log-Periodic Power Law Singularity model.
    Wheatley S; Sornette D; Huber T; Reppen M; Gantner RN
    R Soc Open Sci; 2019 Jun; 6(6):180538. PubMed ID: 31312465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting random walks in fractal media: on the occurrence of time discrete scale invariance.
    Bab MA; Fabricius G; Albano EV
    J Chem Phys; 2008 Jan; 128(4):044911. PubMed ID: 18248004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Power laws and stretched exponentials in a noisy finite-time-singularity model.
    Fogedby HC; Poutkaradze V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021103. PubMed ID: 12241146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical systems approach to study thermoacoustic transitions in a liquid rocket combustor.
    Kasthuri P; Pavithran I; Pawar SA; Sujith RI; Gejji R; Anderson W
    Chaos; 2019 Oct; 29(10):103115. PubMed ID: 31675825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.