These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36932611)

  • 1. Learning to self-fold at a bifurcation.
    Arinze C; Stern M; Nagel SR; Murugan A
    Phys Rev E; 2023 Feb; 107(2-2):025001. PubMed ID: 36932611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shaping the topology of folding pathways in mechanical systems.
    Stern M; Jayaram V; Murugan A
    Nat Commun; 2018 Oct; 9(1):4303. PubMed ID: 30327460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supervised learning through physical changes in a mechanical system.
    Stern M; Arinze C; Perez L; Palmer SE; Murugan A
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14843-14850. PubMed ID: 32546522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable matter by folding.
    Hawkes E; An B; Benbernou NM; Tanaka H; Kim S; Demaine ED; Rus D; Wood RJ
    Proc Natl Acad Sci U S A; 2010 Jul; 107(28):12441-5. PubMed ID: 20616049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-folding origami at any energy scale.
    Pinson MB; Stern M; Carruthers Ferrero A; Witten TA; Chen E; Murugan A
    Nat Commun; 2017 May; 8():15477. PubMed ID: 28516913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cusp-Shaped Elastic Creases and Furrows.
    Karpitschka S; Eggers J; Pandey A; Snoeijer JH
    Phys Rev Lett; 2017 Nov; 119(19):198001. PubMed ID: 29219527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-crease Self-folding by Global Heating.
    Miyashita S; Onal CD; Rus D
    Artif Life; 2015; 21(4):398-411. PubMed ID: 26545159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometrically controlled snapping transitions in shells with curved creases.
    Bende NP; Evans AA; Innes-Gold S; Marin LA; Cohen I; Hayward RC; Santangelo CD
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11175-80. PubMed ID: 26294253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling Robust Self-Folding Origami by Pre-Biasing Vertex Buckling Direction.
    Kang JH; Kim H; Santangelo CD; Hayward RC
    Adv Mater; 2019 Sep; 31(39):e0193006. PubMed ID: 31402536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical neural networks: Architected materials that learn behaviors.
    Lee RH; Mulder EAB; Hopkins JB
    Sci Robot; 2022 Oct; 7(71):eabq7278. PubMed ID: 36260698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learn bifurcations of nonlinear parametric systems via equation-driven neural networks.
    Hao W; Zheng C
    Chaos; 2022 Jan; 32(1):011102. PubMed ID: 35105140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing of self-deploying origami structures using geometrically misaligned crease patterns.
    Saito K; Tsukahara A; Okabe Y
    Proc Math Phys Eng Sci; 2016 Jan; 472(2185):20150235. PubMed ID: 26997884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A data-driven computational scheme for the nonlinear mechanical properties of cellular mechanical metamaterials under large deformation.
    Xue T; Beatson A; Chiaramonte M; Roeder G; Ash JT; Menguc Y; Adriaenssens S; Adams RP; Mao S
    Soft Matter; 2020 Aug; 16(32):7524-7534. PubMed ID: 32700724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local mechanical description of an elastic fold.
    Jules T; Lechenault F; Adda-Bedia M
    Soft Matter; 2019 Feb; 15(7):1619-1626. PubMed ID: 30672558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer.
    Glugla DJ; Alim MD; Byars KD; Nair DP; Bowman CN; Maute KK; McLeod RR
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29658-29667. PubMed ID: 27802605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Design Framework for Structures/Materials with Enhanced Mechanical Performance.
    Liu J; Fan X; Wen G; Qing Q; Wang H; Zhao G
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29642555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Flatness of Bifurcations in 3D Dendritic Trees: An Optimal Design.
    van Pelt J; Uylings HB
    Front Comput Neurosci; 2011; 5():54. PubMed ID: 22291633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices.
    Zheng X; Chen TT; Jiang X; Naito M; Watanabe I
    Sci Technol Adv Mater; 2023; 24(1):2157682. PubMed ID: 36620090
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.