These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36932624)

  • 1. Chaotic saddles and interior crises in a dissipative nontwist system.
    Simile Baroni R; de Carvalho RE; Caldas IL; Viana RL; Morrison PJ
    Phys Rev E; 2023 Feb; 107(2-1):024216. PubMed ID: 36932624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lagrangian descriptors: The shearless curve and the shearless attractor.
    Simile Baroni R; de Carvalho RE
    Phys Rev E; 2024 Feb; 109(2-1):024202. PubMed ID: 38491698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curry-Yorke route to shearless attractors and coexistence of attractors in dissipative nontwist systems.
    Mugnaine M; Batista AM; Caldas IL; Szezech JD; de Carvalho RE; Viana RL
    Chaos; 2021 Feb; 31(2):023125. PubMed ID: 33653060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Destruction and resurgence of the quasiperiodic shearless attractor.
    Baroni RS; Egydio de Carvalho R
    Phys Rev E; 2021 Jul; 104(1-1):014207. PubMed ID: 34412355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global bifurcations in fractional-order chaotic systems with an extended generalized cell mapping method.
    Liu X; Hong L; Jiang J
    Chaos; 2016 Aug; 26(8):084304. PubMed ID: 27586621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractal structures in the parameter space of nontwist area-preserving maps.
    Mathias AC; Mugnaine M; Santos MS; Szezech JD; Caldas IL; Viana RL
    Phys Rev E; 2019 Nov; 100(5-1):052207. PubMed ID: 31869942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics, multistability, and crisis analysis of a sine-circle nontwist map.
    Mugnaine M; Sales MR; Szezech JD; Viana RL
    Phys Rev E; 2022 Sep; 106(3-1):034203. PubMed ID: 36266788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of chaotic saddles in high-dimensional dynamical systems: the Kuramoto-Sivashinsky equation.
    Rempel EL; Chian AC; Macau EE; Rosa RR
    Chaos; 2004 Sep; 14(3):545-56. PubMed ID: 15446964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport properties in nontwist area-preserving maps.
    Szezech JD; Caldas IL; Lopes SR; Viana RL; Morrison PJ
    Chaos; 2009 Dec; 19(4):043108. PubMed ID: 20059204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation.
    Saiki Y; Yamada M; Chian AC; Miranda RA; Rempel EL
    Chaos; 2015 Oct; 25(10):103123. PubMed ID: 26520089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of transient and intermittent dynamics in spatiotemporal chaotic systems.
    Rempel EL; Chian AC
    Phys Rev Lett; 2007 Jan; 98(1):014101. PubMed ID: 17358476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaotic saddles at the onset of intermittent spatiotemporal chaos.
    Rempel EL; Chian AC; Miranda RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056217. PubMed ID: 18233749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doubly transient chaos: generic form of chaos in autonomous dissipative systems.
    Motter AE; Gruiz M; Károlyi G; Tél T
    Phys Rev Lett; 2013 Nov; 111(19):194101. PubMed ID: 24266475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles.
    Dhamala M; Lai YC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):6176-9. PubMed ID: 11970527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport barriers with shearless attractors.
    Kato LK; de Carvalho RE
    Phys Rev E; 2019 Mar; 99(3-1):032218. PubMed ID: 30999446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multistability, noise, and attractor hopping: the crucial role of chaotic saddles.
    Kraut S; Feudel U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):015207. PubMed ID: 12241417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crisis-induced intermittency in two coupled chaotic maps: towards understanding chaotic itinerancy.
    Tanaka G; Sanjuán MA; Aihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016219. PubMed ID: 15697710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crises and chaotic scattering in hydrodynamic pilot-wave experiments.
    Choueiri G; Suri B; Merrin J; Serbyn M; Hof B; Budanur NB
    Chaos; 2022 Sep; 32(9):093138. PubMed ID: 36182399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermittency induced by attractor-merging crisis in the Kuramoto-Sivashinsky equation.
    Rempel EL; Chian AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016203. PubMed ID: 15697694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal behavior in the parametric evolution of chaotic saddles.
    Lai YC; Zyczkowski K; Grebogi C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):5261-5. PubMed ID: 11969484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.