BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36932656)

  • 1. Multi-task adaptive pooling enabled synergetic learning of RNA modification across tissue, type and species from low-resolution epitranscriptomes.
    Song Y; Wang Y; Wang X; Huang D; Nguyen A; Meng J
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36932656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data.
    Huang D; Song B; Wei J; Su J; Coenen F; Meng J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i222-i230. PubMed ID: 34252943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MTTLm
    Wang H; Zeng W; Huang X; Liu Z; Sun Y; Zhang L
    Math Biosci Eng; 2024 Jan; 21(1):272-299. PubMed ID: 38303423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepM6ASeq: prediction and characterization of m6A-containing sequences using deep learning.
    Zhang Y; Hamada M
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):524. PubMed ID: 30598068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MSCAN: multi-scale self- and cross-attention network for RNA methylation site prediction.
    Wang H; Huang T; Wang D; Zeng W; Sun Y; Zhang L
    BMC Bioinformatics; 2024 Jan; 25(1):32. PubMed ID: 38233745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach.
    Chen K; Wei Z; Zhang Q; Wu X; Rong R; Lu Z; Su J; de Magalhães JP; Rigden DJ; Meng J
    Nucleic Acids Res; 2019 Apr; 47(7):e41. PubMed ID: 30993345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WHISTLE: A Functionally Annotated High-Accuracy Map of Human m
    Xu Q; Chen K; Meng J
    Methods Mol Biol; 2021; 2284():519-529. PubMed ID: 33835461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. m6A-TCPred: a web server to predict tissue-conserved human m
    Tu G; Wang X; Xia R; Song B
    BMC Bioinformatics; 2024 Mar; 25(1):127. PubMed ID: 38528499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MTDeepM6A-2S: A two-stage multi-task deep learning method for predicting RNA N6-methyladenosine sites of
    Wang H; Zhao S; Cheng Y; Bi S; Zhu X
    Front Microbiol; 2022; 13():999506. PubMed ID: 36274691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretable prediction models for widespread m6A RNA modification across cell lines and tissues.
    Zhang Y; Wang Z; Zhang Y; Li S; Guo Y; Song J; Yu DJ
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 37995291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction.
    Wang H; Liu H; Huang T; Li G; Zhang L; Sun Y
    BMC Bioinformatics; 2022 Jun; 23(1):221. PubMed ID: 35676633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decomposition of RNA methylome reveals co-methylation patterns induced by latent enzymatic regulators of the epitranscriptome.
    Liu L; Zhang SW; Zhang YC; Liu H; Zhang L; Chen R; Huang Y; Meng J
    Mol Biosyst; 2015 Jan; 11(1):262-74. PubMed ID: 25370990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting N6-Methyladenosine Sites in Multiple Tissues of Mammals through Ensemble Deep Learning.
    Luo Z; Lou L; Qiu W; Xu Z; Xiao X
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. bCNN-Methylpred: Feature-Based Prediction of RNA Sequence Modification Using Branch Convolutional Neural Network.
    Islam N; Park J
    Genes (Basel); 2021 Jul; 12(8):. PubMed ID: 34440330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DirectRMDB: a database of post-transcriptional RNA modifications unveiled from direct RNA sequencing technology.
    Zhang Y; Jiang J; Ma J; Wei Z; Wang Y; Song B; Meng J; Jia G; de Magalhães JP; Rigden DJ; Hang D; Chen K
    Nucleic Acids Res; 2023 Jan; 51(D1):D106-D116. PubMed ID: 36382409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BiPSTP: Sequence feature encoding method for identifying different RNA modifications with bidirectional position-specific trinucleotides propensities.
    Wang M; Ali H; Xu Y; Xie J; Xu S
    J Biol Chem; 2024 Apr; 300(4):107140. PubMed ID: 38447795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PseUI: Pseudouridine sites identification based on RNA sequence information.
    He J; Fang T; Zhang Z; Huang B; Zhu X; Xiong Y
    BMC Bioinformatics; 2018 Aug; 19(1):306. PubMed ID: 30157750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TransRNAm: Identifying Twelve Types of RNA Modifications by an Interpretable Multi-Label Deep Learning Model Based on Transformer.
    Chen T; Wu T; Pan D; Xie J; Zhi J; Wang X; Quan L; Lyu Q
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3623-3634. PubMed ID: 37607147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. m6A-Maize: Weakly supervised prediction of m
    Liang Z; Zhang L; Chen H; Huang D; Song B
    Methods; 2022 Jul; 203():226-232. PubMed ID: 34843978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.