These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36932891)

  • 21. Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis.
    Li J; Ozden A; Wan M; Hu Y; Li F; Wang Y; Zamani RR; Ren D; Wang Z; Xu Y; Nam DH; Wicks J; Chen B; Wang X; Luo M; Graetzel M; Che F; Sargent EH; Sinton D
    Nat Commun; 2021 May; 12(1):2808. PubMed ID: 33990568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering Catalyst-Electrolyte Microenvironments to Optimize the Activity and Selectivity for the Electrochemical Reduction of CO
    Bui JC; Kim C; King AJ; Romiluyi O; Kusoglu A; Weber AZ; Bell AT
    Acc Chem Res; 2022 Feb; 55(4):484-494. PubMed ID: 35104114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrocatalytic CO
    Zheng M; Wang P; Zhi X; Yang K; Jiao Y; Duan J; Zheng Y; Qiao SZ
    J Am Chem Soc; 2022 Aug; 144(32):14936-14944. PubMed ID: 35926980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes.
    Kaczur JJ; Yang H; Liu Z; Sajjad SD; Masel RI
    Front Chem; 2018; 6():263. PubMed ID: 30018951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ni single atoms supported on hierarchically porous carbonized wood with highly active Ni-N
    Chang H; Pan H; Wang F; Zhang Z; Kang Y; Min S
    Nanoscale; 2022 Jul; 14(28):10003-10008. PubMed ID: 35792071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local Chemical Environment Governs Anode Processes in CO
    Vass Á; Endrődi B; Samu GF; Balog Á; Kormányos A; Cherevko S; Janáky C
    ACS Energy Lett; 2021 Nov; 6(11):3801-3808. PubMed ID: 34796265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly Efficient and Stable Catalyst Based on Co(OH)
    Wang Z; Ji S; Liu F; Wang H; Wang X; Wang Q; Pollet BG; Wang R
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29791-29798. PubMed ID: 31343158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials.
    Tatin A; Comminges C; Kokoh B; Costentin C; Robert M; Savéant JM
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5526-9. PubMed ID: 27140621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Hierarchical Porous Fe/Ni-P-B as Practical Bifunctional Electrode for Alkaline Water Electrolysis.
    Zhang J; Chen L; Lu B; Guo Y
    ChemSusChem; 2022 Sep; 15(17):e202200937. PubMed ID: 35785419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective CO
    Li J; Zeng H; Dong X; Ding Y; Hu S; Zhang R; Dai Y; Cui P; Xiao Z; Zhao D; Zhou L; Zheng T; Xiao J; Zeng J; Xia C
    Nat Commun; 2023 Jan; 14(1):340. PubMed ID: 36670129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ni Nanoclusters Anchored on Ni-N-C Sites for CO
    Song Y; Mao J; Zhu C; Li S; Li G; Dong X; Jiang Z; Chen W; Wei W
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):10785-10794. PubMed ID: 36802488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multistep Sulfur Leaching for the Development of a Highly Efficient and Stable NiS
    Xia L; Jiang W; Hartmann H; Mayer J; Lehnert W; Shviro M
    ACS Appl Mater Interfaces; 2022 May; 14(17):19397-19408. PubMed ID: 35452215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphology Modulation and Phase Transformation of Manganese-Cobalt Carbonate Hydroxide Caused by Fluoride Doping and Its Effect on Boosting the Overall Water Electrolysis.
    Shamloofard M; Shahrokhian S
    Inorg Chem; 2023 Jan; 62(3):1178-1191. PubMed ID: 36607645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elucidating the Roles of Nafion/Solvent Formulations in Copper-Catalyzed CO
    Ding P; An H; Zellner P; Guan T; Gao J; Müller-Buschbaum P; Weckhuysen BM; van der Stam W; Sharp ID
    ACS Catal; 2023 Apr; 13(8):5336-5347. PubMed ID: 37123601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering Aspects for the Design of a Bicarbonate Zero-Gap Flow Electrolyzer for the Conversion of CO
    Gutiérrez-Sánchez O; de Mot B; Bulut M; Pant D; Breugelmans T
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):30760-30771. PubMed ID: 35764406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prussian blue analog-derived nickel iron phosphide-reduced graphene oxide hybrid as an efficient catalyst for overall water electrolysis.
    Chang J; Hu Z; Wu D; Xu F; Chen C; Jiang K; Gao Z
    J Colloid Interface Sci; 2023 May; 638():801-812. PubMed ID: 36791478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Boosting Formate Production from CO
    Zou J; Lee CY; Wallace GG
    Adv Sci (Weinh); 2021 Aug; 8(15):e2004521. PubMed ID: 34050629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance and Stability of Aemion and Aemion+ Membranes in Zero-Gap CO
    Mardle P; Gangrade A; Saatkamp T; Jiang Z; Cassegrain S; Zhao N; Shi Z; Holdcroft S
    ChemSusChem; 2023 Jul; 16(14):e202202376. PubMed ID: 36997499
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of Mass Flows and Membrane Cross-over in CO
    Larrazábal GO; Strøm-Hansen P; Heli JP; Zeiter K; Therkildsen KT; Chorkendorff I; Seger B
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41281-41288. PubMed ID: 31603302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Geometric Catalyst Utilization in Zero-Gap CO
    Subramanian S; Yang K; Li M; Sassenburg M; Abdinejad M; Irtem E; Middelkoop J; Burdyny T
    ACS Energy Lett; 2023 Jan; 8(1):222-229. PubMed ID: 36660371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.