These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 36933304)
1. Investigating the debrominations of a subset of brominated flame retardants by biogenic reactive sulfur species. Wu X; Fan K; Wang Q; Cao Q; Chen C; Xun L; Liu H Environ Int; 2023 Apr; 174():107873. PubMed ID: 36933304 [TBL] [Abstract][Full Text] [Related]
2. Microbial debromination of hexabromocyclododecanes. Yu F; Li Y; Wang H; Peng T; Wu YR; Hu Z Appl Microbiol Biotechnol; 2021 Jun; 105(11):4535-4550. PubMed ID: 34076715 [TBL] [Abstract][Full Text] [Related]
3. Debromination of novel brominated flame retardants using Zn-based additives: A viable thermochemical approach in the mitigation of toxic effects during e-waste recycling. Kuttiyathil MS; Ali L; Hajamohideen AR; Altarawneh M Environ Pollut; 2024 Apr; 346():123645. PubMed ID: 38402939 [TBL] [Abstract][Full Text] [Related]
4. Biodegradation of typical BFRs 2,4,6-tribromophenol by an indigenous strain Bacillus sp. GZT isolated from e-waste dismantling area through functional heterologous expression. Liang Z; Li G; Mai B; An T Sci Total Environ; 2019 Dec; 697():134159. PubMed ID: 31491624 [TBL] [Abstract][Full Text] [Related]
5. Brominated flame retardants in the urban atmosphere of Northeast China: concentrations, temperature dependence and gas-particle partitioning. Qi H; Li WL; Liu LY; Song WW; Ma WL; Li YF Sci Total Environ; 2014 Sep; 491-492():60-6. PubMed ID: 24661943 [TBL] [Abstract][Full Text] [Related]
6. Solvent effects on quantitative analysis of brominated flame retardants with Soxhlet extraction. Zhong Y; Li D; Zhu X; Huang W; Peng P Environ Geochem Health; 2018 Oct; 40(5):1955-1964. PubMed ID: 28523590 [TBL] [Abstract][Full Text] [Related]
7. Polymeric brominated flame retardants: are they a relevant source of emerging brominated aromatic compounds in the environment? Gouteux B; Alaee M; Mabury SA; Pacepavicius G; Muir DC Environ Sci Technol; 2008 Dec; 42(24):9039-44. PubMed ID: 19174868 [TBL] [Abstract][Full Text] [Related]
8. Extent and mechanisms of brominated flame retardant emissions from waste soft furnishings and fabrics: A critical review. Stubbings WA; Harrad S Environ Int; 2014 Oct; 71():164-75. PubMed ID: 25042535 [TBL] [Abstract][Full Text] [Related]
9. In silico and biological analysis of anti-androgen activity of the brominated flame retardants ATE, BATE and DPTE in zebrafish. Pradhan A; Asnake S; Kharlyngdoh JB; Modig C; Olsson PE Chem Biol Interact; 2015 May; 233():35-45. PubMed ID: 25818047 [TBL] [Abstract][Full Text] [Related]
10. Fate of brominated flame retardants and organochlorine pesticides in urban soil: volatility and degradation. Wong F; Kurt-Karakus P; Bidleman TF Environ Sci Technol; 2012 Mar; 46(5):2668-74. PubMed ID: 22243402 [TBL] [Abstract][Full Text] [Related]
12. Combating toxic emissions from thermal recycling of polymeric fractions laden with novel brominated flame retardants (NBFRs) in e-waste: an in-situ approach using Ca(OH) Kuttiyathil MS; Ali L; Ahmed OH; Altarawneh M Environ Sci Pollut Res Int; 2023 Sep; 30(43):98300-98313. PubMed ID: 37606772 [TBL] [Abstract][Full Text] [Related]
13. Brominated flame retardants in waste electrical and electronic equipment: substance flows in a recycling plant. Morf LS; Tremp J; Gloor R; Huber Y; Stengele M; Zennegg M Environ Sci Technol; 2005 Nov; 39(22):8691-9. PubMed ID: 16323764 [TBL] [Abstract][Full Text] [Related]
14. Emissions of selected brominated flame retardants from consumer materials: the effects of content, temperature, and timescale. Sun J; Chen Q; Han Y; Zhou H; Zhang A Environ Sci Pollut Res Int; 2018 Aug; 25(24):24201-24209. PubMed ID: 29948699 [TBL] [Abstract][Full Text] [Related]
15. Biomagnification of polybrominated diphenyl ether and hexabromocyclododecane flame retardants in the polar bear food chain in Svalbard, Norway. Sørmo EG; Salmer MP; Jenssen BM; Hop H; Baek K; Kovacs KM; Lydersen C; Falk-Petersen S; Gabrielsen GW; Lie E; Skaare JU Environ Toxicol Chem; 2006 Sep; 25(9):2502-11. PubMed ID: 16986806 [TBL] [Abstract][Full Text] [Related]
16. Plant uptake of atmospheric brominated flame retardants at an E-waste site in southern China. Tian M; Chen SJ; Wang J; Luo Y; Luo XJ; Mai BX Environ Sci Technol; 2012 Mar; 46(5):2708-14. PubMed ID: 22308972 [TBL] [Abstract][Full Text] [Related]
17. Efficient hexabromocyclododecane-biodegrading microorganisms isolated in Taiwan. Chou TH; Li YJ; Ko CF; Wu TY; Shih YH Chemosphere; 2021 May; 271():129544. PubMed ID: 33445030 [TBL] [Abstract][Full Text] [Related]
18. Effects of metals on the transformation of hexabromocyclododecane (HBCD) in solvents: implications for solvent-based recycling of brominated flame retardants. Zhong Y; Peng P; Yu Z; Deng H Chemosphere; 2010 Sep; 81(1):72-8. PubMed ID: 20633923 [TBL] [Abstract][Full Text] [Related]
19. A low-volume air sampling method for legacy and novel brominated flame retardants in indoor environment using a newly developed sorbent mixture. Wang Y; Yang X; Liu Y; Zhang Q; Xiao H; Wang Y; Yao Y; Sun H Ecotoxicol Environ Saf; 2021 Mar; 210():111837. PubMed ID: 33422837 [TBL] [Abstract][Full Text] [Related]
20. Metabolism in the toxicokinetics and fate of brominated flame retardants--a review. Hakk H; Letcher RJ Environ Int; 2003 Sep; 29(6):801-28. PubMed ID: 12850098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]