These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Releases of brominated flame retardants (BFRs) from microplastics in aqueous medium: Kinetics and molecular-size dependence of diffusion. Sun B; Hu Y; Cheng H; Tao S Water Res; 2019 Mar; 151():215-225. PubMed ID: 30597444 [TBL] [Abstract][Full Text] [Related]
43. Temporal trends of legacy and novel brominated flame retardants in sediments along the Rhône River corridor in France. Vauclin S; Mourier B; Dendievel AM; Marchand P; Vénisseau A; Morereau A; Lepage H; Eyrolle F; Winiarski T Chemosphere; 2021 May; 271():129889. PubMed ID: 33736204 [TBL] [Abstract][Full Text] [Related]
44. Legacy and alternative brominated flame retardants in outdoor dust and pine needles in mainland China: Spatial trends, dust-plant partitioning and human exposure. Zhu H; Sun H; Yao Y; Gan Z; Wang Y; Kannan K Environ Pollut; 2018 Dec; 243(Pt A):758-765. PubMed ID: 30228060 [TBL] [Abstract][Full Text] [Related]
45. Complete catalytic debromination of hexabromocyclododecane using a silica-supported palladium catalyst in alkaline 2-propanol. Ukisu Y Chemosphere; 2017 Jul; 179():179-184. PubMed ID: 28365503 [TBL] [Abstract][Full Text] [Related]
46. Legacy and novel brominated flame retardants in animal-derived foods from China Total Diet Study (CTDS): Temporal trends, evidence of substitution, and dietary exposure assessment. Zhao X; Lyu B; Zhang L; Li J; Zhao Y; Wu Y; Shi Z J Hazard Mater; 2023 Feb; 443(Pt A):130223. PubMed ID: 36367471 [TBL] [Abstract][Full Text] [Related]
47. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Alaee M; Arias P; Sjödin A; Bergman A Environ Int; 2003 Sep; 29(6):683-9. PubMed ID: 12850087 [TBL] [Abstract][Full Text] [Related]
48. Vapor pressure of three brominated flame retardants determined by using the Knudsen effusion method. Fu J; Suuberg EM Environ Toxicol Chem; 2012 Mar; 31(3):574-8. PubMed ID: 22213441 [TBL] [Abstract][Full Text] [Related]
49. Catalytic degradation of brominated flame retardants in the environment: New techniques and research highlights. Dong J; Li G; Gao J; Zhang H; Bi S; Liu S; Liao C; Jiang G Sci Total Environ; 2022 Nov; 848():157695. PubMed ID: 35908699 [TBL] [Abstract][Full Text] [Related]
50. Legacy and emerging brominated flame retardants in China: A review on food and human milk contamination, human dietary exposure and risk assessment. Shi Z; Zhang L; Li J; Wu Y Chemosphere; 2018 May; 198():522-536. PubMed ID: 29428767 [TBL] [Abstract][Full Text] [Related]
51. Simple and fast method for the measurement of legacy and novel brominated flame retardants in human serum. Pirard C; Charlier C Chemosphere; 2018 Nov; 211():918-925. PubMed ID: 30119023 [TBL] [Abstract][Full Text] [Related]
52. A comparison of the in vitro cyto- and neurotoxicity of brominated and halogen-free flame retardants: prioritization in search for safe(r) alternatives. Hendriks HS; Meijer M; Muilwijk M; van den Berg M; Westerink RH Arch Toxicol; 2014 Apr; 88(4):857-69. PubMed ID: 24395120 [TBL] [Abstract][Full Text] [Related]
53. Comparative Effects of Brominated Flame Retardants BDE-209, TBBPA, and HBCD on Neurotoxicity in Mice. Wang J; Dai GD Chem Res Toxicol; 2022 Sep; 35(9):1512-1518. PubMed ID: 35950316 [TBL] [Abstract][Full Text] [Related]
54. Toxic effects of brominated flame retardants in man and in wildlife. Darnerud PO Environ Int; 2003 Sep; 29(6):841-53. PubMed ID: 12850100 [TBL] [Abstract][Full Text] [Related]
55. Factors influencing risk assessments of brominated flame-retardants; evidence based on seafood from the North East Atlantic Ocean. Nøstbakken OJ; Duinker A; Rasinger JD; Nilsen BM; Sanden M; Frantzen S; Hove HT; Lundebye AK; Berntssen MHG; Hannisdal R; Madsen L; Maage A Environ Int; 2018 Oct; 119():544-557. PubMed ID: 30077002 [TBL] [Abstract][Full Text] [Related]
56. Brominated flame retardants (BFRs) in marine food webs from Bohai Sea, China. Liu Y; Cui S; Ma Y; Jiang Q; Zhao X; Cheng Q; Guo L; Jia H; Lin L Sci Total Environ; 2021 Jun; 772():145036. PubMed ID: 33578148 [TBL] [Abstract][Full Text] [Related]
57. Occurrence, levels and profiles of brominated flame retardants in daily-use consumer products on the Chinese market. Li Y; Chang Q; Duan H; Liu Y; Zhang J; Li J Environ Sci Process Impacts; 2019 Mar; 21(3):446-455. PubMed ID: 30676604 [TBL] [Abstract][Full Text] [Related]
58. Emerging brominated flame retardants in the sediment of the Great Lakes. Yang R; Wei H; Guo J; Li A Environ Sci Technol; 2012 Mar; 46(6):3119-26. PubMed ID: 22324406 [TBL] [Abstract][Full Text] [Related]
59. Legacy and novel brominated flame retardants in interior car dust - Implications for human exposure. Besis A; Christia C; Poma G; Covaci A; Samara C Environ Pollut; 2017 Nov; 230():871-881. PubMed ID: 28735244 [TBL] [Abstract][Full Text] [Related]
60. The brominated flame retardants, PBDEs and HBCD, in Canadian human milk samples collected from 1992 to 2005; concentrations and trends. Ryan JJ; Rawn DF Environ Int; 2014 Sep; 70():1-8. PubMed ID: 24879366 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]