These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 36933304)
61. Legacy and current-use brominated flame retardants in the Barn Owl. Eulaers I; Jaspers VL; Pinxten R; Covaci A; Eens M Sci Total Environ; 2014 Feb; 472():454-62. PubMed ID: 24300457 [TBL] [Abstract][Full Text] [Related]
62. Maternal transfer of brominated flame retardants in zebrafish (Danio rerio). Nyholm JR; Norman A; Norrgren L; Haglund P; Andersson PL Chemosphere; 2008 Sep; 73(2):203-8. PubMed ID: 18514256 [TBL] [Abstract][Full Text] [Related]
63. Brominated flame retardants (BFRs) in contaminated food contact articles: identification using DART-HRMS and GC-MS. Paseiro-Cerrato R; Ackerman L; de Jager L; Begley T Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 Feb; 38(2):350-359. PubMed ID: 33406001 [TBL] [Abstract][Full Text] [Related]
64. Associations between exposure to brominated flame retardants and metabolic syndrome and its components in U.S. adults. Che Z; Jia H; Chen R; Pan K; Fan Z; Su C; Wu Z; Zhang T Sci Total Environ; 2023 Feb; 858(Pt 2):159935. PubMed ID: 36336051 [TBL] [Abstract][Full Text] [Related]
65. A review of the analysis of novel brominated flame retardants. Papachlimitzou A; Barber JL; Losada S; Bersuder P; Law RJ J Chromatogr A; 2012 Jan; 1219():15-28. PubMed ID: 22172654 [TBL] [Abstract][Full Text] [Related]
66. Some commonly used brominated flame retardants cause Ca2+-ATPase inhibition, beta-amyloid peptide release and apoptosis in SH-SY5Y neuronal cells. Al-Mousa F; Michelangeli F PLoS One; 2012; 7(4):e33059. PubMed ID: 22485137 [TBL] [Abstract][Full Text] [Related]
67. Evaluation of the Effect of Selected Brominated Flame Retardants on Human Serum Albumin and Human Erythrocyte Membrane Proteins. Jarosiewicz M; Miłowska K; Krokosz A; Bukowska B Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486253 [TBL] [Abstract][Full Text] [Related]
68. Test chamber investigation of the volatilization from source materials of brominated flame retardants and their subsequent deposition to indoor dust. Rauert C; Harrad S; Stranger M; Lazarov B Indoor Air; 2015 Aug; 25(4):393-404. PubMed ID: 25142809 [TBL] [Abstract][Full Text] [Related]
69. Reductive transformation of hexabromocyclododecane (HBCD) by FeS. Li D; Peng P; Yu Z; Huang W; Zhong Y Water Res; 2016 Sep; 101():195-202. PubMed ID: 27262547 [TBL] [Abstract][Full Text] [Related]
70. The sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase (SERCA) is the likely molecular target for the acute toxicity of the brominated flame retardant hexabromocyclododecane (HBCD). Al-Mousa F; Michelangeli F Chem Biol Interact; 2014 Jan; 207():1-6. PubMed ID: 24189551 [TBL] [Abstract][Full Text] [Related]
71. Assessing the persistence, bioaccumulation potential and toxicity of brominated flame retardants: data availability and quality for 36 alternative brominated flame retardants. Stieger G; Scheringer M; Ng CA; Hungerbühler K Chemosphere; 2014 Dec; 116():118-23. PubMed ID: 24656972 [TBL] [Abstract][Full Text] [Related]
72. Brominated flame retardants: cause for concern? Birnbaum LS; Staskal DF Environ Health Perspect; 2004 Jan; 112(1):9-17. PubMed ID: 14698924 [TBL] [Abstract][Full Text] [Related]
73. Several current-use, non-PBDE brominated flame retardants are highly bioaccumulative: evidence from field determined bioaccumulation factors. Wu JP; Guan YT; Zhang Y; Luo XJ; Zhi H; Chen SJ; Mai BX Environ Int; 2011 Jan; 37(1):210-5. PubMed ID: 20952068 [TBL] [Abstract][Full Text] [Related]
74. Brominated flame retardants (BFRs) in indoor and outdoor air in a community in Guangzhou, a megacity of southern China. Ding N; Wang T; Chen SJ; Yu M; Zhu ZC; Tian M; Luo XJ; Mai BX Environ Pollut; 2016 May; 212():457-463. PubMed ID: 26952274 [TBL] [Abstract][Full Text] [Related]
75. Brominated flame retardants in the Arctic environment--trends and new candidates. de Wit CA; Herzke D; Vorkamp K Sci Total Environ; 2010 Jul; 408(15):2885-918. PubMed ID: 19815253 [TBL] [Abstract][Full Text] [Related]
76. Presence and partitioning properties of the flame retardants pentabromotoluene, pentabromoethylbenzene and hexabromobenzene near suspected source zones in Norway. Arp HP; Møskeland T; Andersson PL; Nyholm JR J Environ Monit; 2011 Mar; 13(3):505-13. PubMed ID: 21140013 [TBL] [Abstract][Full Text] [Related]
77. Evaluating the use of synchrotron X-ray spectroscopy in investigating brominated flame retardants in indoor dust. Blanchard P; Babichuk N; Sarkar A Environ Sci Pollut Res Int; 2020 Nov; 27(33):42168-42174. PubMed ID: 32860190 [TBL] [Abstract][Full Text] [Related]
78. Characterization of brominated flame retardants in construction and demolition waste components: HBCD and PBDEs. Duan H; Yu D; Zuo J; Yang B; Zhang Y; Niu Y Sci Total Environ; 2016 Dec; 572():77-85. PubMed ID: 27494656 [TBL] [Abstract][Full Text] [Related]
79. Brominated flame retardants in plasma samples from three different occupational groups in Norway. Thomsen C; Lundanes E; Becher G J Environ Monit; 2001 Aug; 3(4):366-70. PubMed ID: 11523435 [TBL] [Abstract][Full Text] [Related]
80. Are brominated flame retardants endocrine disruptors? Legler J; Brouwer A Environ Int; 2003 Sep; 29(6):879-85. PubMed ID: 12850103 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]