These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36933447)

  • 21. The steam gasification reactivity and kinetics of municipal solid waste chars derived from rapid pyrolysis.
    Xu F; Wang B; Yang D; Qiao Y; Tian Y
    Waste Manag; 2018 Oct; 80():64-72. PubMed ID: 30455028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparing the quantity and quality of glass, metals, and minerals present in waste incineration bottom ashes from a fluidized bed and a grate incinerator.
    Blasenbauer D; Huber F; Mühl J; Fellner J; Lederer J
    Waste Manag; 2023 Apr; 161():142-155. PubMed ID: 36878041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-disposal of municipal solid waste incineration fly ash and bottom slag: A novel method of low temperature melting treatment.
    Wong G; Gan M; Fan X; Ji Z; Chen X; Wang Z
    J Hazard Mater; 2021 Apr; 408():124438. PubMed ID: 33229258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste.
    Okada T; Tomikawa H
    Waste Manag; 2013 Mar; 33(3):605-14. PubMed ID: 22981781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Jeong S; Lee T; Lim SJ; Park YK; Kim S; Kim YM
    J Nanosci Nanotechnol; 2021 Jul; 21(7):3764-3768. PubMed ID: 33715688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An investigation of an oxygen-enriched combustion of municipal solid waste on flue gas emission and combustion performance at a 8 MWth waste-to-energy plant.
    Ma C; Li B; Chen D; Wenga T; Ma W; Lin F; Chen G
    Waste Manag; 2019 Aug; 96():47-56. PubMed ID: 31376969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics of inorganic matter from Australian municipal solid waste processed under combustion and gasification conditions.
    Ilyushechkin A; He C; Hla SS
    Waste Manag Res; 2021 Jul; 39(7):928-936. PubMed ID: 33094707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Process aspects in combustion and gasification Waste-to-Energy (WtE) units.
    Leckner B
    Waste Manag; 2015 Mar; 37():13-25. PubMed ID: 24846797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A full-scale study on thermal degradation of polychlorinated dibenzo- p-dioxins and dibenzofurans in municipal solid waste incinerator fly ash and its secondary air pollution control in China.
    Gao X; Ji B; Yan D; Huang Q; Zhu X
    Waste Manag Res; 2017 Apr; 35(4):437-443. PubMed ID: 27909210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combined disc pelletisation and thermal treatment of MSWI fly ash.
    Huber F; Herzel H; Adam C; Mallow O; Blasenbauer D; Fellner J
    Waste Manag; 2018 Mar; 73():381-391. PubMed ID: 29273540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Harmless treatment of municipal solid waste incinerator fly ash through shaft furnace.
    Li Y; Zhang JL; Liu ZJ; Chen LZ; Wang YZ
    Waste Manag; 2021 Apr; 124():110-117. PubMed ID: 33611155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag.
    Zhou X; Zhou M; Wu X; Han Y; Geng J; Wang T; Wan S; Hou H
    Chemosphere; 2017 Sep; 182():76-84. PubMed ID: 28494363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting the co-melting temperatures of municipal solid waste incinerator fly ash and sewage sludge ash using grey model and neural network.
    Pai TY; Lin KL; Shie JL; Chang TC; Chen BY
    Waste Manag Res; 2011 Mar; 29(3):284-93. PubMed ID: 20406756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flue gas torrefaction of municipal solid waste: Fuel properties, combustion characterizations, and nitrogen /sulfur emissions.
    Zhu X; Li S; Zhang Y; Li J; Zhang Z; Sun Y; Zhou S; Li N; Yan B; Chen G
    Bioresour Technol; 2022 May; 351():126967. PubMed ID: 35272035
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distributions of and environmental risks posed by Cr and Zn when co-treating solid waste in different kilns.
    Xiao H; Li Y; Wang M; Guo Z; Yan D; Liu Z
    Waste Manag; 2023 Jun; 165():119-127. PubMed ID: 37121050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution of heavy metals from iron bath-melting separation process applied to municipal solid waste incineration fly ash.
    Wei CM; Liu QC; Wen J
    Environ Technol; 2009 Dec; 30(14):1503-9. PubMed ID: 20183994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vitrification of municipal solid waste incineration fly ash with B
    Gao J; Dong C; Zhao Y; Hu X; Qin W; Wang X; Zhang J; Xue J; Zhang X
    Waste Manag; 2020 Feb; 102():932-938. PubMed ID: 31855693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling and comparative assessment of municipal solid waste gasification for energy production.
    Arafat HA; Jijakli K
    Waste Manag; 2013 Aug; 33(8):1704-13. PubMed ID: 23726119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Converting moving-grate incineration from combustion to gasification - numerical simulation of the burning characteristics.
    Yang YB; Sharifi VN; Swithenbank J
    Waste Manag; 2007; 27(5):645-55. PubMed ID: 16730435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.