BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36933596)

  • 1. Enhanced neural differentiation by applying electrical stimulation utilizing conductive and antioxidant alginate-polypyrrole/poly-l-lysine hydrogels.
    Karimi-Soflou R; Shabani I; Karkhaneh A
    Int J Biol Macromol; 2023 May; 237():124063. PubMed ID: 36933596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications.
    Yang S; Jang L; Kim S; Yang J; Yang K; Cho SW; Lee JY
    Macromol Biosci; 2016 Nov; 16(11):1653-1661. PubMed ID: 27455895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injectable conductive collagen/alginate/polypyrrole hydrogels as a biocompatible system for biomedical applications.
    Ketabat F; Karkhaneh A; Mehdinavaz Aghdam R; Hossein Ahmadi Tafti S
    J Biomater Sci Polym Ed; 2017 Jun; 28(8):794-805. PubMed ID: 28278043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of nanochitosan incorporated polypyrrole/alginate conducting scaffold for neural tissue engineering.
    Manzari-Tavakoli A; Tarasi R; Sedghi R; Moghimi A; Niknejad H
    Sci Rep; 2020 Dec; 10(1):22012. PubMed ID: 33328579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of electroconductive hydrogels based on oxidized alginate and polypyrrole-grafted gelatin as tissue scaffolds.
    Shabani Samghabadi M; Karkhaneh A; Katbab AA
    Soft Matter; 2021 Sep; 17(37):8465-8473. PubMed ID: 34586146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Electroconductive Hyaluronic Acid Hydrogels Incorporated with Carbon Nanotubes and Polypyrrole by Catechol-Mediated Dispersion Enhance Neurogenesis of Human Neural Stem Cells.
    Shin J; Choi EJ; Cho JH; Cho AN; Jin Y; Yang K; Song C; Cho SW
    Biomacromolecules; 2017 Oct; 18(10):3060-3072. PubMed ID: 28876908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondria-loaded alginate-based hydrogel accelerated angiogenesis in a rat model of acute myocardial infarction.
    Hassanpour P; Sadeghsoltani F; Haiaty S; Zakeri Z; Saghebasl S; Izadpanah M; Boroumand S; Mota A; Rahmati M; Rahbarghazi R; Talebi M; Rabbani S; Tafti SHA
    Int J Biol Macromol; 2024 Mar; 260(Pt 2):129633. PubMed ID: 38253146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically Conductive and 3D-Printable Oxidized Alginate-Gelatin Polypyrrole:PSS Hydrogels for Tissue Engineering.
    Distler T; Polley C; Shi F; Schneidereit D; Ashton MD; Friedrich O; Kolb JF; Hardy JG; Detsch R; Seitz H; Boccaccini AR
    Adv Healthc Mater; 2021 May; 10(9):e2001876. PubMed ID: 33711199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversibly Assembled Electroconductive Hydrogel via a Host-Guest Interaction for 3D Cell Culture.
    Xu Y; Cui M; Patsis PA; Günther M; Yang X; Eckert K; Zhang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7715-7724. PubMed ID: 30714715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Culture of neural stem cells on conductive and microgrooved polymeric scaffolds fabricated via electrospun fiber-template lithography.
    Patel M; Min JH; Hong MH; Lee HJ; Kang S; Yi S; Koh WG
    Biomed Mater; 2020 May; 15(4):045007. PubMed ID: 32053805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering.
    Sajesh KM; Jayakumar R; Nair SV; Chennazhi KP
    Int J Biol Macromol; 2013 Nov; 62():465-71. PubMed ID: 24080452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductive GelMA/alginate/polypyrrole/graphene hydrogel as a potential scaffold for cardiac tissue engineering; Physiochemical, mechanical, and biological evaluations.
    Kaviani S; Talebi A; Labbaf S; Karimzadeh F
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129276. PubMed ID: 38211921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional electroconductive carbon nanotube-based hydrogel scaffolds enhance neural differentiation of stem cells from apical papilla.
    Liu J; Zou T; Zhang Y; Koh J; Li H; Wang Y; Zhao Y; Zhang C
    Biomater Adv; 2022 Jul; 138():212868. PubMed ID: 35913250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced cell proliferation by electrical stimulation based on electroactive regenerated bacterial cellulose hydrogels.
    Wang L; Hu S; Ullah MW; Li X; Shi Z; Yang G
    Carbohydr Polym; 2020 Dec; 249():116829. PubMed ID: 32933675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carboxymethyl Chitosan and Gelatin Hydrogel Scaffolds Incorporated with Conductive PEDOT Nanoparticles for Improved Neural Stem Cell Proliferation and Neuronal Differentiation.
    Guan S; Wang Y; Xie F; Wang S; Xu W; Xu J; Sun C
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroactive and antioxidant injectable in-situ forming hydrogels with tunable properties by polyethylenimine and polyaniline for nerve tissue engineering.
    Karimi-Soflou R; Nejati S; Karkhaneh A
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111565. PubMed ID: 33445075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering.
    Maharjan B; Kaliannagounder VK; Jang SR; Awasthi GP; Bhattarai DP; Choukrani G; Park CH; Kim CS
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111056. PubMed ID: 32994008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: effects of coating on electrical conductivity and neural cell growth.
    Sudwilai T; Ng JJ; Boonkrai C; Israsena N; Chuangchote S; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(12):1240-52. PubMed ID: 24933469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation.
    Pelto J; Björninen M; Pälli A; Talvitie E; Hyttinen J; Mannerström B; Suuronen Seppanen R; Kellomäki M; Miettinen S; Haimi S
    Tissue Eng Part A; 2013 Apr; 19(7-8):882-92. PubMed ID: 23126228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.