These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 36933741)
1. Plastic waste as pyrolysis feedstock for plastic oil production: A review. Chang SH Sci Total Environ; 2023 Jun; 877():162719. PubMed ID: 36933741 [TBL] [Abstract][Full Text] [Related]
2. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review. Papari S; Bamdad H; Berruti F Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065677 [TBL] [Abstract][Full Text] [Related]
3. Pyrolytic conversion of waste plastics to energy products: A review on yields, properties, and production costs. Faisal F; Rasul MG; Jahirul MI; Schaller D Sci Total Environ; 2023 Feb; 861():160721. PubMed ID: 36496020 [TBL] [Abstract][Full Text] [Related]
4. Production and utilization of pyrolysis oil from solidplastic wastes: A review on pyrolysis process and influence of reactors design. Sekar M; Ponnusamy VK; Pugazhendhi A; Nižetić S; Praveenkumar TR J Environ Manage; 2022 Jan; 302(Pt B):114046. PubMed ID: 34775338 [TBL] [Abstract][Full Text] [Related]
5. Processing plastic waste via pyrolysis-thermolysis into hydrogen and solid carbon additive to ethylene-vinyl acetate foam for cushioning applications. Wang Y; Chang BP; Veksha A; Kashcheev A; Tok ALY; Lipik V; Yoshiie R; Ueki Y; Naruse I; Lisak G J Hazard Mater; 2024 Feb; 464():132996. PubMed ID: 37988865 [TBL] [Abstract][Full Text] [Related]
6. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism. Singh RK; Ruj B; Sadhukhan AK; Gupta P J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634 [TBL] [Abstract][Full Text] [Related]
7. Waste to energy: An experimental study of utilizing the agricultural residue, MSW, and e-waste available in Bangladesh for pyrolysis conversion. Islam MK; Khatun MS; Arefin MA; Islam MR; Hassan M Heliyon; 2021 Dec; 7(12):e08530. PubMed ID: 34917811 [TBL] [Abstract][Full Text] [Related]
8. Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins? Erkmen B; Ozdogan A; Ezdesir A; Celik G Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850143 [TBL] [Abstract][Full Text] [Related]
9. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor. Sivagami K; Kumar KV; Tamizhdurai P; Govindarajan D; Kumar M; Nambi I RSC Adv; 2022 Mar; 12(13):7612-7620. PubMed ID: 35424760 [TBL] [Abstract][Full Text] [Related]
10. Economic analysis of the circular economy based on waste plastic pyrolysis oil: a case of the university campus. Park H; Kim K; Yu M; Yun Z; Lee S Environ Dev Sustain; 2023 Mar; ():1-21. PubMed ID: 37363013 [TBL] [Abstract][Full Text] [Related]
11. Conventional pyrolysis of Plastic waste for Product recovery and utilization of pyrolytic gases for carbon nanotubes production. Singh RK; Ruj B; Sadhukhan AK; Gupta P Environ Sci Pollut Res Int; 2022 Mar; 29(14):20007-20016. PubMed ID: 33179183 [TBL] [Abstract][Full Text] [Related]
12. Waste tire pyrolysis and desulfurization of tire pyrolytic oil (TPO) - A review. Mello M; Rutto H; Seodigeng T J Air Waste Manag Assoc; 2023 Mar; 73(3):159-177. PubMed ID: 36269581 [TBL] [Abstract][Full Text] [Related]
13. A Preliminary Study on the Use of Highly Aromatic Pyrolysis Oils Coming from Plastic Waste as Alternative Liquid Fuels. Asueta A; Fulgencio-Medrano L; Miguel-Fernández R; Leivar J; Amundarain I; Iruskieta A; Arnaiz S; Gutiérrez-Ortiz JI; Lopez-Urionabarrenechea A Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763583 [TBL] [Abstract][Full Text] [Related]
14. Conversion of pyrolytic non-condensable gases from polypropylene co-polymer into bamboo-type carbon nanotubes and high-quality oil using biochar as catalyst. Shah K; Patel S; Halder P; Kundu S; Marzbali MH; Hakeem IG; Pramanik BK; Chiang K; Patel T J Environ Manage; 2022 Jan; 301():113791. PubMed ID: 34592670 [TBL] [Abstract][Full Text] [Related]
15. Pyrolysis of waste tyres: a review. Williams PT Waste Manag; 2013 Aug; 33(8):1714-28. PubMed ID: 23735607 [TBL] [Abstract][Full Text] [Related]
16. Assessing the economic and ecological viability of generating electricity from oil derived from pyrolysis of plastic waste in China. Cudjoe D; Brahim T; Zhu B Waste Manag; 2023 Aug; 168():354-365. PubMed ID: 37343442 [TBL] [Abstract][Full Text] [Related]
17. Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy. Chew KW; Chia SR; Chia WY; Cheah WY; Munawaroh HSH; Ong WJ Environ Pollut; 2021 Jun; 278():116836. PubMed ID: 33689952 [TBL] [Abstract][Full Text] [Related]
18. Defossilization and decarbonization of hydrogen production using plastic waste: Temperature and feedstock effects during thermolysis stage. Veksha A; Wang Y; Foo JW; Naruse I; Lisak G J Hazard Mater; 2023 Jun; 452():131270. PubMed ID: 36989781 [TBL] [Abstract][Full Text] [Related]
19. Pyrolysis of mixed engineering plastics: Economic challenges for automotive plastic waste. Stallkamp C; Hennig M; Volk R; Stapf D; Schultmann F Waste Manag; 2024 Mar; 176():105-116. PubMed ID: 38277808 [TBL] [Abstract][Full Text] [Related]
20. The clean energy aspect of plastic waste - hydrogen gas production, CO Sudalaimuthu P; Sathyamurthy R Environ Sci Pollut Res Int; 2023 May; 30(25):66559-66584. PubMed ID: 37133666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]