BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36933741)

  • 21. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons.
    Ryu HW; Kim DH; Jae J; Lam SS; Park ED; Park YK
    Bioresour Technol; 2020 Aug; 310():123473. PubMed ID: 32389430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental investigation on slow thermal pyrolysis of real-world plastic wastes in a fixed bed reactor to obtain aromatic rich fuel grade liquid oil.
    Subhashini ; Mondal T
    J Environ Manage; 2023 Oct; 344():118680. PubMed ID: 37531671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines.
    Budsaereechai S; Hunt AJ; Ngernyen Y
    RSC Adv; 2019 Feb; 9(10):5844-5857. PubMed ID: 35515940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physico-chemical properties of excavated plastic from landfill mining and current recycling routes.
    Canopoli L; Fidalgo B; Coulon F; Wagland ST
    Waste Manag; 2018 Jun; 76():55-67. PubMed ID: 29622377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in liquid fuel production from plastic waste via pyrolysis: Emphasis on polyolefins and polystyrene.
    Valizadeh S; Valizadeh B; Seo MW; Choi YJ; Lee J; Chen WH; Lin KA; Park YK
    Environ Res; 2024 Apr; 246():118154. PubMed ID: 38218520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A pyrolysis study for the thermal and kinetic characteristics of an agricultural waste with two different plastic wastes.
    Çepelioğullar Ö; Pütün AE
    Waste Manag Res; 2014 Oct; 32(10):971-9. PubMed ID: 25062939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A review of microwave pyrolysis as a sustainable plastic waste management technique.
    Putra PHM; Rozali S; Patah MFA; Idris A
    J Environ Manage; 2022 Feb; 303():114240. PubMed ID: 34902653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Method development and evaluation of pyrolysis oils from mixed waste plastic by GC-VUV.
    Dunkle MN; Pijcke P; Winniford WL; Ruitenbeek M; Bellos G
    J Chromatogr A; 2021 Jan; 1637():461837. PubMed ID: 33383237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pyrolysis of polystyrene waste in the presence of activated carbon in conventional and microwave heating using modified thermocouple.
    Prathiba R; Shruthi M; Miranda LR
    Waste Manag; 2018 Jun; 76():528-536. PubMed ID: 29576515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils.
    Breyer S; Mekhitarian L; Rimez B; Haut B
    Waste Manag; 2017 Feb; 60():363-374. PubMed ID: 28063835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disposal of plastic mulching film through CO
    Jung JM; Cho SH; Jung S; Lin KA; Chen WH; Tsang YF; Kwon EE
    J Hazard Mater; 2022 May; 430():128454. PubMed ID: 35168100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Prediction of Calorific Value of Carbonized Solid Fuel Produced from Refuse-Derived Fuel in the Low-Temperature Pyrolysis in CO
    Syguła E; Świechowski K; Stępień P; Koziel JA; Białowiec A
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33374414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism.
    Ahmed MHM; Batalha N; Mahmudul HMD; Perkins G; Konarova M
    Bioresour Technol; 2020 Aug; 310():123457. PubMed ID: 32371033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microwave-assisted pyrolysis of biomass for liquid biofuels production.
    Yin C
    Bioresour Technol; 2012 Sep; 120():273-84. PubMed ID: 22771019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conversion of plastic waste into fuels: A critical review.
    Li N; Liu H; Cheng Z; Yan B; Chen G; Wang S
    J Hazard Mater; 2022 Feb; 424(Pt B):127460. PubMed ID: 34653868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review.
    Wang Y; Akbarzadeh A; Chong L; Du J; Tahir N; Awasthi MK
    Chemosphere; 2022 Jun; 297():134181. PubMed ID: 35248592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil.
    Miandad R; Nizami AS; Rehan M; Barakat MA; Khan MI; Mustafa A; Ismail IMI; Murphy JD
    Waste Manag; 2016 Dec; 58():250-259. PubMed ID: 27717700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts.
    Miandad R; Barakat MA; Rehan M; Aburiazaiza AS; Ismail IMI; Nizami AS
    Waste Manag; 2017 Nov; 69():66-78. PubMed ID: 28882427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-stage thermal pyrolysis of plastic solid waste: Set-up and operative conditions investigation for gaseous fuel production.
    Marchetti L; Guastaferro M; Annunzi F; Tognotti L; Nicolella C; Vaccari M
    Waste Manag; 2024 Apr; 179():77-86. PubMed ID: 38461626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalytic stepwise pyrolysis for dechlorination and chemical recycling of PVC-containing mixed plastic wastes: Influence of temperature, heating rate, and catalyst.
    Hu Y; Li M; Zhou N; Yuan H; Guo Q; Jiao L; Ma Z
    Sci Total Environ; 2024 Jan; 908():168344. PubMed ID: 37951271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.