BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36933828)

  • 1. Activated fibroblasts in cardiac and cancer fibrosis: An overview of analogies and new potential therapeutic options.
    Nicolini G; Balzan S; Forini F
    Life Sci; 2023 May; 321():121575. PubMed ID: 36933828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies.
    Liu M; López de Juan Abad B; Cheng K
    Adv Drug Deliv Rev; 2021 Jun; 173():504-519. PubMed ID: 33831476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Featured Article: TGF-β1 dominates extracellular matrix rigidity for inducing differentiation of human cardiac fibroblasts to myofibroblasts.
    Cho N; Razipour SE; McCain ML
    Exp Biol Med (Maywood); 2018 Apr; 243(7):601-612. PubMed ID: 29504479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical stress regulates the mechanotransduction and metabolism of cardiac fibroblasts in fibrotic cardiac diseases.
    Tian G; Ren T
    Eur J Cell Biol; 2023 Jun; 102(2):151288. PubMed ID: 36696810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diverse origins and activation of fibroblasts in cardiac fibrosis.
    Aujla PK; Kassiri Z
    Cell Signal; 2021 Feb; 78():109869. PubMed ID: 33278559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities.
    Frangogiannis NG
    Mol Aspects Med; 2019 Feb; 65():70-99. PubMed ID: 30056242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel factors that activate and deactivate cardiac fibroblasts: A new perspective for treatment of cardiac fibrosis.
    de Oliveira Camargo R; Abual'anaz B; Rattan SG; Filomeno KL; Dixon IMC
    Wound Repair Regen; 2021 Jul; 29(4):667-677. PubMed ID: 34076932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac fibrosis.
    Frangogiannis NG
    Cardiovasc Res; 2021 May; 117(6):1450-1488. PubMed ID: 33135058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced
    Bracco Gartner TCL; Stein JM; Muylaert DEP; Bouten CVC; Doevendans PA; Khademhosseini A; Suyker WJL; Sluijter JPG; Hjortnaes J
    Tissue Eng Part C Methods; 2021 Feb; 27(2):100-114. PubMed ID: 33407000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanosensor YAP cooperates with TGF-β1 signaling to promote myofibroblast activation and matrix stiffening in a 3D model of human cardiac fibrosis.
    Ragazzini S; Scocozza F; Bernava G; Auricchio F; Colombo GI; Barbuto M; Conti M; Pesce M; Garoffolo G
    Acta Biomater; 2022 Oct; 152():300-312. PubMed ID: 36055606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Hypothetical Concept in Metabolic Understanding of Cardiac Fibrosis: Glycolysis Combined with TGF-β and KLF5 Signaling.
    Methatham T; Nagai R; Aizawa K
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional plasticity of fibroblasts in heart disease.
    Micheletti R; Alexanian M
    Biochem Soc Trans; 2022 Oct; 50(5):1247-1255. PubMed ID: 36281993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Chromatin Targeting of BRD4 Stimulates Cardiac Fibroblast Activation.
    Stratton MS; Bagchi RA; Felisbino MB; Hirsch RA; Smith HE; Riching AS; Enyart BY; Koch KA; Cavasin MA; Alexanian M; Song K; Qi J; Lemieux ME; Srivastava D; Lam MPY; Haldar SM; Lin CY; McKinsey TA
    Circ Res; 2019 Sep; 125(7):662-677. PubMed ID: 31409188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SKI activates the Hippo pathway via LIMD1 to inhibit cardiac fibroblast activation.
    Landry NM; Rattan SG; Filomeno KL; Meier TW; Meier SC; Foran SJ; Meier CF; Koleini N; Fandrich RR; Kardami E; Duhamel TA; Dixon IMC
    Basic Res Cardiol; 2021 Apr; 116(1):25. PubMed ID: 33847835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fibroblast mechanosensing, SKI and Hippo signaling and the cardiac fibroblast phenotype: Looking beyond TGF-β.
    Landry NM; Dixon IMC
    Cell Signal; 2020 Dec; 76():109802. PubMed ID: 33017619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Cardiac Fibroblasts in Cardiac Injury and Repair.
    Han M; Zhou B
    Curr Cardiol Rep; 2022 Mar; 24(3):295-304. PubMed ID: 35028821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice.
    Maity S; Muhamed J; Sarikhani M; Kumar S; Ahamed F; Spurthi KM; Ravi V; Jain A; Khan D; Arathi BP; Desingu PA; Sundaresan NR
    J Biol Chem; 2020 Jan; 295(2):415-434. PubMed ID: 31744885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate stiffness modulates cardiac fibroblast activation, senescence, and proinflammatory secretory phenotype.
    Felisbino MB; Rubino M; Travers JG; Schuetze KB; Lemieux ME; Anseth KS; Aguado BA; McKinsey TA
    Am J Physiol Heart Circ Physiol; 2024 Jan; 326(1):H61-H73. PubMed ID: 37889253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNA-21-Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload.
    Ramanujam D; Schön AP; Beck C; Vaccarello P; Felician G; Dueck A; Esfandyari D; Meister G; Meitinger T; Schulz C; Engelhardt S
    Circulation; 2021 Apr; 143(15):1513-1525. PubMed ID: 33550817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Ski-Zeb2-Meox2 pathway provides a novel mechanism for regulation of the cardiac myofibroblast phenotype.
    Cunnington RH; Northcott JM; Ghavami S; Filomeno KL; Jahan F; Kavosh MS; Davies JJ; Wigle JT; Dixon IM
    J Cell Sci; 2014 Jan; 127(Pt 1):40-9. PubMed ID: 24155330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.