These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36934123)

  • 1. Tailoring high-energy storage NaNbO
    Zhang MH; Ding H; Egert S; Zhao C; Villa L; Fulanović L; Groszewicz PB; Buntkowsky G; Kleebe HJ; Albe K; Klein A; Koruza J
    Nat Commun; 2023 Mar; 14(1):1525. PubMed ID: 36934123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Well-defined double hysteresis loop in NaNbO
    Luo N; Ma L; Luo G; Xu C; Rao L; Chen Z; Cen Z; Feng Q; Chen X; Toyohisa F; Zhu Y; Hong J; Li JF; Zhang S
    Nat Commun; 2023 Mar; 14(1):1776. PubMed ID: 36997552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realizing Stable Relaxor Antiferroelectric and Superior Energy Storage Properties in (Na
    Chen J; Qi H; Zuo R
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32871-32879. PubMed ID: 32614595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excellent Energy-Storage Performance of (0.85 -
    Xie A; Chen J; Zuo J; Liu J; Li T; Jiang X; Zuo R
    ACS Appl Mater Interfaces; 2023 May; 15(18):22301-22309. PubMed ID: 37126568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergy of a Stabilized Antiferroelectric Phase and Domain Engineering Boosting the Energy Storage Performance of NaNbO
    Liu J; Li P; Li C; Bai W; Wu S; Zheng P; Zhang J; Zhai J
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17662-17673. PubMed ID: 35389613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of a New Ferroelectric Relaxor Based on a Combination of Antiferroelectric and Paraelectric Systems.
    Ma CH; Liao YK; Zheng Y; Zhuang S; Lu SC; Shao PW; Chen JW; Lai YH; Yu P; Hu JM; Huang R; Chu YH
    ACS Appl Mater Interfaces; 2022 May; 14(19):22278-22286. PubMed ID: 35523210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-Induced Ferroelectricity in Antiferroelectric Oxide Membranes.
    Xu R; Crust KJ; Harbola V; Arras R; Patel KY; Prosandeev S; Cao H; Shao YT; Behera P; Caretta L; Kim WJ; Khandelwal A; Acharya M; Wang MM; Liu Y; Barnard ES; Raja A; Martin LW; Gu XW; Zhou H; Ramesh R; Muller DA; Bellaiche L; Hwang HY
    Adv Mater; 2023 Apr; 35(17):e2210562. PubMed ID: 36739113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding the Double/Multiple Hysteresis Loops in Antiferroelectric Materials.
    Hu T; Fu Z; Li Z; Liu M; Zhang L; Yu Z; Chen X; Zheng Y; Li T; Wang Y; Wang G; Dong X; Xu F
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60241-60249. PubMed ID: 34881567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable Domain Switching Features of Incommensurate Antiferroelectric Ceramics Realizing Excellent Energy Storage Properties.
    Ge G; Shi C; Chen C; Shi Y; Yan F; Bai H; Yang J; Lin J; Shen B; Zhai J
    Adv Mater; 2022 Jun; 34(24):e2201333. PubMed ID: 35393735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorite-structure antiferroelectrics.
    Park MH; Hwang CS
    Rep Prog Phys; 2019 Dec; 82(12):124502. PubMed ID: 31574497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh Energy Storage Density and High Efficiency in Lead-Free (Bi
    Ma J; Zhang D; Ying F; Li X; Li L; Guo S; Huan Y; Zhang J; Wang J; Zhang ST
    ACS Appl Mater Interfaces; 2022 May; 14(17):19704-19713. PubMed ID: 35442644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achieving Remarkable Amplification of Energy-Storage Density in Two-Step Sintered NaNbO
    Xie A; Qi H; Zuo R
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19467-19475. PubMed ID: 32250098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superior Energy-Storage Properties in Bi
    Zhang Y; Xie A; Fu J; Jiang X; Li T; Zhou C; Zuo R
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):40043-40051. PubMed ID: 36006029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing phase boundary in AgNbO
    Luo N; Han K; Cabral MJ; Liao X; Zhang S; Liao C; Zhang G; Chen X; Feng Q; Li JF; Wei Y
    Nat Commun; 2020 Sep; 11(1):4824. PubMed ID: 32973146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving Ultrahigh Energy Storage Density of La and Ta Codoped AgNbO
    Li B; Yan Z; Zhou X; Qi H; Koval V; Luo X; Luo H; Yan H; Zhang D
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4246-4256. PubMed ID: 36639350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Phase Transition and In-Situ Energy Storage Pathway in Nonpolar Materials: A Review.
    Wei XK; Dunin-Borkowski RE; Mayer J
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supercritical Relaxor Nanograined Ferroelectrics for Ultrahigh-Energy-Storage Capacitors.
    Xie A; Fu J; Zuo R; Jiang X; Li T; Fu Z; Yin Y; Li X; Zhang S
    Adv Mater; 2022 Aug; 34(34):e2204356. PubMed ID: 35766453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Energy Storage Performance of Sodium Niobate-Based Relaxor Dielectrics by a Ramp-to-Spike Sintering Profile.
    Yang L; Kong X; Cheng Z; Zhang S
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32834-32841. PubMed ID: 32583659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Combined Optimization Strategy for Improvement of Comprehensive Energy Storage Performance in Sodium Niobate-Based Antiferroelectric Ceramics.
    Wang X; Wang X; Huan Y; Li C; Ouyang J; Wei T
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9330-9339. PubMed ID: 35156378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antiferroelectric to Antiferroelectric-Relaxor Phase Transition in Calcium Strontium Sulfoaluminate.
    Wakamatsu T; Kawamura G; Abe T; Nakahira Y; Kawaguchi S; Moriyoshi C; Kuroiwa Y; Terasaki I; Taniguchi H
    Inorg Chem; 2019 Nov; 58(22):15410-15416. PubMed ID: 31692349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.