These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36934124)

  • 21. Inference of S-system models of genetic networks by solving one-dimensional function optimization problems.
    Kimura S; Araki D; Matsumura K; Okada-Hatakeyama M
    Math Biosci; 2012 Feb; 235(2):161-70. PubMed ID: 22155075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recovery-Based Error Estimator for Natural Convection Equations Based on Defect-Correction Methods.
    Li L; Su H; Feng X
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modified fractional variational iteration method for solving the generalized time-space fractional Schrödinger equation.
    Hong B; Lu D
    ScientificWorldJournal; 2014; 2014():964643. PubMed ID: 25276865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parallel multigrid preconditioner for the cardiac bidomain model.
    Weber dos Santos R; Plank G; Bauer S; Vigmond EJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1960-8. PubMed ID: 15536898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of Euler Neural Networks with Soft Computing Paradigm to Solve Nonlinear Problems Arising in Heat Transfer.
    Khan NA; Khalaf OI; Romero CAT; Sulaiman M; Bakar MA
    Entropy (Basel); 2021 Aug; 23(8):. PubMed ID: 34441192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A General Deep Learning Method for Computing Molecular Parameters of a Viscoelastic Constitutive Model by Solving an Inverse Problem.
    Ye M; Fan YQ; Yuan XF
    Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688218
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recursion Newton-Like Algorithm for l
    Zhang H; Yuan Z; Xiu N
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5882-5896. PubMed ID: 34898441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-resolution subspace-based optimization method for solving three-dimensional inverse scattering problems.
    Ye X; Poli L; Oliveri G; Zhong Y; Agarwal K; Massa A; Chen X
    J Opt Soc Am A Opt Image Sci Vis; 2015 Nov; 32(11):2218-26. PubMed ID: 26560937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iterative deep neural networks based on proximal gradient descent for image restoration.
    Lv T; Pan Z; Wei W; Yang G; Song J; Wang X; Sun L; Li Q; Sun X
    PLoS One; 2022; 17(11):e0276373. PubMed ID: 36331931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New Multi-Step Iterative Methods for Solving Systems of Nonlinear Equations and Their Application on GNSS Pseudorange Equations.
    Madhu K; Elango A; Jr Landry R; Al-Arydah M
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Symbolic iteration method based on computer algebra analysis for Kepler's equation.
    Zhang R; Bian S; Li H
    Sci Rep; 2022 Feb; 12(1):2957. PubMed ID: 35194140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An immersed boundary neural network for solving elliptic equations with singular forces on arbitrary domains.
    Balam RI; Hernandez-Lopez F; Trejo-Sánchez J; Zapata MU
    Math Biosci Eng; 2020 Nov; 18(1):22-56. PubMed ID: 33525079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fixed-point iterative linear inverse solver with extended precision.
    Zhu Z; Klein AB; Li G; Pang S
    Sci Rep; 2023 Mar; 13(1):5198. PubMed ID: 36997592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A recurrent neural network for solving linear projection equations.
    Xia Y; Wang J
    Neural Netw; 2000 Apr; 13(3):337-50. PubMed ID: 10937967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Research on a hybrid neural network task assignment algorithm for solving multi-constraint heterogeneous autonomous underwater robot swarms.
    Ru J; Hao D; Zhang X; Xu H; Jia Z
    Front Neurorobot; 2022; 16():1055056. PubMed ID: 36704716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iterative sinc-convolution method for solving planar D-bar equation with application to EIT.
    Abbasi M; Naghsh-Nilchi AR
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):838-60. PubMed ID: 25099566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An iterative pruning algorithm for feedforward neural networks.
    Castellano G; Fanelli AM; Pelillo M
    IEEE Trans Neural Netw; 1997; 8(3):519-31. PubMed ID: 18255656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A physics-informed neural network based on mixed data sampling for solving modified diffusion equations.
    Fang Q; Mou X; Li S
    Sci Rep; 2023 Feb; 13(1):2491. PubMed ID: 36781943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems.
    Liu D; Wei Q
    IEEE Trans Neural Netw Learn Syst; 2014 Mar; 25(3):621-34. PubMed ID: 24807455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A universal deep learning approach for modeling the flow of patients under different severities.
    Jiang S; Chin KS; Tsui KL
    Comput Methods Programs Biomed; 2018 Feb; 154():191-203. PubMed ID: 29249343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.