These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 36934257)

  • 1. Guadecitabine increases response to combined anti-CTLA-4 and anti-PD-1 treatment in mouse melanoma in vivo by controlling T-cells, myeloid derived suppressor and NK cells.
    Amaro A; Reggiani F; Fenoglio D; Gangemi R; Tosi A; Parodi A; Banelli B; Rigo V; Mastracci L; Grillo F; Cereghetti A; Tastanova A; Ghosh A; Sallustio F; Emionite L; Daga A; Altosole T; Filaci G; Rosato A; Levesque M; Maio M; Pfeffer U; Croce M;
    J Exp Clin Cancer Res; 2023 Mar; 42(1):67. PubMed ID: 36934257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Future perspectives in melanoma research : Meeting report from the "Melanoma Bridge". Napoli, December 1st-4th 2015.
    Ascierto PA; Agarwala S; Botti G; Cesano A; Ciliberto G; Davies MA; Demaria S; Dummer R; Eggermont AM; Ferrone S; Fu YX; Gajewski TF; Garbe C; Huber V; Khleif S; Krauthammer M; Lo RS; Masucci G; Palmieri G; Postow M; Puzanov I; Silk A; Spranger S; Stroncek DF; Tarhini A; Taube JM; Testori A; Wang E; Wargo JA; Yee C; Zarour H; Zitvogel L; Fox BA; Mozzillo N; Marincola FM; Thurin M
    J Transl Med; 2016 Nov; 14(1):313. PubMed ID: 27846884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting interferon signaling and CTLA-4 enhance the therapeutic efficacy of anti-PD-1 immunotherapy in preclinical model of HPV
    Dorta-Estremera S; Hegde VL; Slay RB; Sun R; Yanamandra AV; Nicholas C; Nookala S; Sierra G; Curran MA; Sastry KJ
    J Immunother Cancer; 2019 Sep; 7(1):252. PubMed ID: 31533840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer.
    Luker AJ; Graham LJ; Smith TM; Camarena C; Zellner MP; Gilmer JS; Damle SR; Conrad DH; Bear HD; Martin RK
    BMC Immunol; 2020 Feb; 21(1):8. PubMed ID: 32106810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Landscape of immune-related signatures induced by targeting of different epigenetic regulators in melanoma: implications for immunotherapy.
    Anichini A; Molla A; Nicolini G; Perotti VE; Sgambelluri F; Covre A; Fazio C; Lofiego MF; Di Giacomo AM; Coral S; Manca A; Sini MC; Pisano M; Noviello T; Caruso F; Brich S; Pruneri G; Maurichi A; Santinami M; Ceccarelli M; Palmieri G; Maio M; Mortarini R;
    J Exp Clin Cancer Res; 2022 Nov; 41(1):325. PubMed ID: 36397155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma.
    Kondo Y; Ohno T; Nishii N; Harada K; Yagita H; Azuma M
    Oral Oncol; 2016 Jun; 57():54-60. PubMed ID: 27208845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies.
    Wei SC; Anang NAS; Sharma R; Andrews MC; Reuben A; Levine JH; Cogdill AP; Mancuso JJ; Wargo JA; Pe'er D; Allison JP
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22699-22709. PubMed ID: 31636208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PD-L1 targeting high-affinity NK (t-haNK) cells induce direct antitumor effects and target suppressive MDSC populations.
    Fabian KP; Padget MR; Donahue RN; Solocinski K; Robbins Y; Allen CT; Lee JH; Rabizadeh S; Soon-Shiong P; Schlom J; Hodge JW
    J Immunother Cancer; 2020 May; 8(1):. PubMed ID: 32439799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors.
    Curran MA; Montalvo W; Yagita H; Allison JP
    Proc Natl Acad Sci U S A; 2010 Mar; 107(9):4275-80. PubMed ID: 20160101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The MEK inhibitor selumetinib complements CTLA-4 blockade by reprogramming the tumor immune microenvironment.
    Poon E; Mullins S; Watkins A; Williams GS; Koopmann JO; Di Genova G; Cumberbatch M; Veldman-Jones M; Grosskurth SE; Sah V; Schuller A; Reimer C; Dovedi SJ; Smith PD; Stewart R; Wilkinson RW
    J Immunother Cancer; 2017 Aug; 5(1):63. PubMed ID: 28807001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting immunosuppressive Ly6C+ classical monocytes reverses anti-PD-1/CTLA-4 immunotherapy resistance.
    Rodriguez BL; Chen L; Li Y; Miao S; Peng DH; Fradette JJ; Diao L; Konen JM; Alvarez FRR; Solis LM; Yi X; Padhye A; Gibson LA; Ochieng JK; Zhou X; Wang J; Gibbons DL
    Front Immunol; 2023; 14():1161869. PubMed ID: 37449205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of the Antitumor Activity of the iNKT Agonist ABX196, a Novel Enhancer of Cancer Immunotherapy, in Melanoma and Hepatocarcinoma Mouse Models.
    Scherrer D; Barrett N; Teyton L; Pearce T; Nitcheu J; Pouletty P; Santo J; Ehrlich HJ
    Mol Cancer Ther; 2022 Dec; 21(12):1788-1797. PubMed ID: 36198025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade.
    Wei SC; Levine JH; Cogdill AP; Zhao Y; Anang NAS; Andrews MC; Sharma P; Wang J; Wargo JA; Pe'er D; Allison JP
    Cell; 2017 Sep; 170(6):1120-1133.e17. PubMed ID: 28803728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the
    Chevolet I; Speeckaert R; Schreuer M; Neyns B; Krysko O; Bachert C; Hennart B; Allorge D; van Geel N; Van Gele M; Brochez L
    Oncoimmunology; 2015 Mar; 4(3):e982382. PubMed ID: 25949897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IL2/Anti-IL2 Complex Combined with CTLA-4, But Not PD-1, Blockade Rescues Antitumor NK Cell Function by Regulatory T-cell Modulation.
    Caudana P; Núñez NG; De La Rochere P; Pinto A; Denizeau J; Alonso R; Niborski LL; Lantz O; Sedlik C; Piaggio E
    Cancer Immunol Res; 2019 Mar; 7(3):443-457. PubMed ID: 30651291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immune microenvironment modulation unmasks therapeutic benefit of radiotherapy and checkpoint inhibition.
    Newton JM; Hanoteau A; Liu HC; Gaspero A; Parikh F; Gartrell-Corrado RD; Hart TD; Laoui D; Van Ginderachter JA; Dharmaraj N; Spanos WC; Saenger Y; Young S; Sikora AG
    J Immunother Cancer; 2019 Aug; 7(1):216. PubMed ID: 31409394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-CTLA-4 Activates Intratumoral NK Cells and Combined with IL15/IL15Rα Complexes Enhances Tumor Control.
    Sanseviero E; O'Brien EM; Karras JR; Shabaneh TB; Aksoy BA; Xu W; Zheng C; Yin X; Xu X; Karakousis GC; Amaravadi RK; Nam B; Turk MJ; Hammerbacher J; Rubinstein MP; Schuchter LM; Mitchell TC; Liu Q; Stone EL
    Cancer Immunol Res; 2019 Aug; 7(8):1371-1380. PubMed ID: 31239316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Checkpoint blockade accelerates a novel switch from an NKT-driven TNFα response toward a T cell driven IFN-γ response within the tumor microenvironment.
    Aoyama S; Nakagawa R; Nemoto S; Perez-Villarroel P; Mulé JJ; Mailloux AW
    J Immunother Cancer; 2021 Jun; 9(6):. PubMed ID: 34135102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor-derived GLI1 promotes remodeling of the immune tumor microenvironment in melanoma.
    Giammona A; De Vellis C; Crivaro E; Maresca L; Amoriello R; Ricci F; Anichini G; Pietrobono S; Pease DR; Fernandez-Zapico ME; Ballerini C; Stecca B
    J Exp Clin Cancer Res; 2024 Aug; 43(1):214. PubMed ID: 39090759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immune checkpoint Ab enhances the antigen-specific anti-tumor effects by modulating both dendritic cells and regulatory T lymphocytes.
    Sun NY; Chen YL; Lin HW; Chiang YC; Chang CF; Tai YJ; Chen CA; Sun WZ; Chien CL; Cheng WF
    Cancer Lett; 2019 Mar; 444():20-34. PubMed ID: 30543813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.