These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36934314)

  • 1. A Conformable Ultrasound Patch for Cavitation-Enhanced Transdermal Cosmeceutical Delivery.
    Yu CC; Shah A; Amiri N; Marcus C; Nayeem MOG; Bhayadia AK; Karami A; Dagdeviren C
    Adv Mater; 2023 Jun; 35(23):e2300066. PubMed ID: 36934314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sonophoresis with ultrasound-responsive liquid-core nuclei for transdermal drug delivery.
    Park D; Won J; Lee G; Lee Y; Kim CW; Seo J
    Skin Res Technol; 2022 Mar; 28(2):291-298. PubMed ID: 35034386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent progress in transdermal sonophoresis.
    Ita K
    Pharm Dev Technol; 2017 Jun; 22(4):458-466. PubMed ID: 26608060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permeability enhancement for transdermal delivery of large molecule using low-frequency sonophoresis combined with microneedles.
    Han T; Das DB
    J Pharm Sci; 2013 Oct; 102(10):3614-22. PubMed ID: 23873449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Transdermal Drug Delivery by Sonophoresis and Simultaneous Application of Sonophoresis and Iontophoresis.
    Park J; Lee H; Lim GS; Kim N; Kim D; Kim YC
    AAPS PharmSciTech; 2019 Jan; 20(3):96. PubMed ID: 30694397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in ultrasound-based transdermal drug delivery.
    Seah BC; Teo BM
    Int J Nanomedicine; 2018; 13():7749-7763. PubMed ID: 30538456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport.
    Tang H; Wang CC; Blankschtein D; Langer R
    Pharm Res; 2002 Aug; 19(8):1160-9. PubMed ID: 12240942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Analysis of Acoustic Pressure for Sonophoresis and Its Effect on Transdermal Penetration.
    Kurashina Y; Asano R; Matsui M; Nomoto T; Ando K; Nakamura K; Nishiyama N; Kitamoto Y
    Ultrasound Med Biol; 2022 May; 48(5):933-944. PubMed ID: 35272891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis.
    Tezel A; Mitragotri S
    Biophys J; 2003 Dec; 85(6):3502-12. PubMed ID: 14645045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transdermal drug delivery using low-frequency sonophoresis.
    Mitragotri S; Blankschtein D; Langer R
    Pharm Res; 1996 Mar; 13(3):411-20. PubMed ID: 8692734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanistic study of ultrasonically-enhanced transdermal drug delivery.
    Mitragotri S; Edwards DA; Blankschtein D; Langer R
    J Pharm Sci; 1995 Jun; 84(6):697-706. PubMed ID: 7562407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transdermal Delivery of Enfuvirtide in a Porcine Model Using a Low-Frequency, Low-Power Ultrasound Transducer Patch.
    Snook KA; Van Ess R; Werner JR; Clement RS; Ocon-Grove OM; Dodds JW; Ryan KJ; Acosta EP; Zurlo JJ; Mulvihill ML
    Ultrasound Med Biol; 2019 Feb; 45(2):513-525. PubMed ID: 30583819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relations between acoustic cavitation and skin resistance during intermediate- and high-frequency sonophoresis.
    Rich KT; Hoerig CL; Rao MB; Mast TD
    J Control Release; 2014 Nov; 194():266-77. PubMed ID: 25135791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous resins as a cavitation enhancer for low-frequency sonophoresis.
    Terahara T; Mitragotri S; Langer R
    J Pharm Sci; 2002 Mar; 91(3):753-9. PubMed ID: 11920760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery.
    Ueda H; Mutoh M; Seki T; Kobayashi D; Morimoto Y
    Biol Pharm Bull; 2009 May; 32(5):916-20. PubMed ID: 19420764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound mediated transdermal drug delivery.
    Azagury A; Khoury L; Enden G; Kost J
    Adv Drug Deliv Rev; 2014 Jun; 72():127-43. PubMed ID: 24463344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration.
    Park D; Song G; Jo Y; Won J; Son T; Cha O; Kim J; Jung B; Park H; Kim CW; Seo J
    PLoS One; 2016; 11(6):e0157707. PubMed ID: 27322539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploitation of sub-micron cavitation nuclei to enhance ultrasound-mediated transdermal transport and penetration of vaccines.
    Bhatnagar S; Kwan JJ; Shah AR; Coussios CC; Carlisle RC
    J Control Release; 2016 Sep; 238():22-30. PubMed ID: 27417040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency and thermal effects on the enhancement of transdermal transport by sonophoresis.
    Merino G; Kalia YN; Delgado-Charro MB; Potts RO; Guy RH
    J Control Release; 2003 Feb; 88(1):85-94. PubMed ID: 12586506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The progress of research on low-frequency sonophoresis and its applications].
    Tu X; Yin Q; Zhang W; Huang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Dec; 25(6):1474-8. PubMed ID: 19166235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.