These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36934535)

  • 1. Predicting the effect of a combination drug therapy on the prostate tumor growth via an improvement of a direct radial basis function partition of unity technique for a diffuse-interface model.
    Narimani N; Dehghan M
    Comput Biol Med; 2023 May; 157():106708. PubMed ID: 36934535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radial basis function-generated finite difference scheme for simulating the brain cancer growth model under radiotherapy in various types of computational domains.
    Dehghan M; Narimani N
    Comput Methods Programs Biomed; 2020 Oct; 195():105641. PubMed ID: 32726719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized moving least squares approximation for the solution of local and non-local models of cancer cell invasion of tissue under the effect of adhesion in one- and two-dimensional spaces.
    Mohammadi V; Dehghan M
    Comput Biol Med; 2020 Sep; 124():103803. PubMed ID: 32738629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational simulation of cellular proliferation using a meshless method.
    Barbosa MIA; Belinha J; Jorge RMN; Carvalho AX
    Comput Methods Programs Biomed; 2022 Sep; 224():106974. PubMed ID: 35834900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction-Diffusion Equations on Surfaces.
    Shankar V; Wright GB; Kirby RM; Fogelson AL
    J Sci Comput; 2016 Jun; 63(3):745-768. PubMed ID: 25983388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching.
    Cristini V; Li X; Lowengrub JS; Wise SM
    J Math Biol; 2009 Apr; 58(4-5):723-63. PubMed ID: 18787827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiogenesis of prostate cancer and antiangiogenic therapy.
    Uehara H
    J Med Invest; 2003 Aug; 50(3-4):146-53. PubMed ID: 13678383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A chain reaction approach to modelling gene pathways.
    Cheng GC; Chen DT; Chen JJ; Soong SJ; Lamartiniere C; Barnes S
    Transl Cancer Res; 2012 Aug; 1(2):61-73. PubMed ID: 22943042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4-dimensional local radial basis function interpolation of large, uniformly spaced datasets.
    Thewlis J; Stevens D; Power H; Giddings D; Gowland P; Vloeberghs M
    Comput Methods Programs Biomed; 2023 Jan; 228():107235. PubMed ID: 36413829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Efficient High-Order Meshless Method for Advection-Diffusion Equations on Time-Varying Irregular Domains.
    Shankar V; Wright GB; Fogelson AL
    J Comput Phys; 2021 Nov; 445():. PubMed ID: 34538887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperviscosity-Based Stabilization for Radial Basis Function-Finite Difference (RBF-FD) Discretizations of Advection-Diffusion Equations.
    Shankar V; Fogelson AL
    J Comput Phys; 2018 Nov; 372():616-639. PubMed ID: 31011233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A local stabilized approach for approximating the modified time-fractional diffusion problem arising in heat and mass transfer.
    Nikan O; Avazzadeh Z; Machado JAT
    J Adv Res; 2021 Sep; 32():45-60. PubMed ID: 34484825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural gradient learning algorithms for RBF networks.
    Zhao J; Wei H; Zhang C; Li W; Guo W; Zhang K
    Neural Comput; 2015 Feb; 27(2):481-505. PubMed ID: 25380332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation.
    Huang GB; Saratchandran P; Sundararajan N
    IEEE Trans Neural Netw; 2005 Jan; 16(1):57-67. PubMed ID: 15732389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for Feedback Regulation Following Cholesterol Lowering Therapy in a Prostate Cancer Xenograft Model.
    Masko EM; Alfaqih MA; Solomon KR; Barry WT; Newgard CB; Muehlbauer MJ; Valilis NA; Phillips TE; Poulton SH; Freedland AR; Sun S; Dambal SK; Sanders SE; Macias E; Freeman MR; Dewhirst MW; Pizzo SV; Freedland SJ
    Prostate; 2017 Apr; 77(5):446-457. PubMed ID: 27900797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination antiangiogenic and androgen deprivation therapy for prostate cancer: a promising therapeutic approach.
    Nicholson B; Gulding K; Conaway M; Wedge SR; Theodorescu D
    Clin Cancer Res; 2004 Dec; 10(24):8728-34. PubMed ID: 15623658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new RBF neural network with boundary value constraints.
    Hong X; Chen S
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):298-303. PubMed ID: 19068436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meshless method with operator splitting technique for transient nonlinear bioheat transfer in two-dimensional skin tissues.
    Zhang ZW; Wang H; Qin QH
    Int J Mol Sci; 2015 Jan; 16(1):2001-19. PubMed ID: 25603180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined antiangiogenic and immune therapy of prostate cancer.
    Huang X; Raskovalova T; Lokshin A; Krasinskas A; Devlin J; Watkins S; Wolf SF; Gorelik E
    Angiogenesis; 2005; 8(1):13-23. PubMed ID: 16132614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.