These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36934587)

  • 1. Comparative analysis of electroretinogram with subdermal and invasive recording methods in mice.
    Liu S; Yuan F; Xiang M
    Biochem Biophys Res Commun; 2023 May; 655():118-126. PubMed ID: 36934587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the uniform field electroretinogram for mouse retinal ganglion cell functional analysis.
    Lagali PS; Shanmugalingam U; Baker AN; Mezey N; Smith PD; Coupland SG; Tsilfidis C
    Doc Ophthalmol; 2023 Aug; 147(1):29-43. PubMed ID: 37106219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optimized procedure to record visual evoked potential in mice.
    Liu S; Xiang K; Lei Q; Qiu S; Xiang M; Jin K
    Exp Eye Res; 2022 May; 218():109011. PubMed ID: 35245512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring retinal morphologic and functional changes in mice following optic nerve crush.
    Liu Y; McDowell CM; Zhang Z; Tebow HE; Wordinger RJ; Clark AF
    Invest Ophthalmol Vis Sci; 2014 May; 55(6):3766-74. PubMed ID: 24854856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of different recording parameters to establish a standard for flash electroretinography in rodents.
    Bayer AU; Cook P; Brodie SE; Maag KP; Mittag T
    Vision Res; 2001 Aug; 41(17):2173-85. PubMed ID: 11448710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal pathway origins of the pattern ERG of the mouse.
    Miura G; Wang MH; Ivers KM; Frishman LJ
    Exp Eye Res; 2009 Jun; 89(1):49-62. PubMed ID: 19250935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Invasive Electroretinogram Recording with Simultaneous Optogenetics to Dissect Retinal Ganglion Cells Electrophysiological Dynamics.
    Hong E; Glynn C; Wang Q; Rao S
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of Changes in Visual Function During Disease Development in a Mouse Model of Pigmentary Glaucoma.
    Grillo SL; Montgomery CL; Johnson HM; Koulen P
    J Glaucoma; 2018 Sep; 27(9):828-841. PubMed ID: 30001268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A procedure for recording electroretinogram (ERG) and effect of sodium iodate on ERG in mice].
    Sugimoto S; Imawaka M; Kurata K; Kanamaru K; Ito T; Sasaki S; Ando T; Saijo T; Sato S
    J Toxicol Sci; 1996 Jun; 21 Suppl 1():15-32. PubMed ID: 8709159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillatory potentials in patients with birdshot chorioretinopathy.
    Wang D; Nair A; Goldberg N; Friedman A; Jabs D; Brodie SE
    Doc Ophthalmol; 2020 Dec; 141(3):293-305. PubMed ID: 32542469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of experimental glaucoma in primates on oscillatory potentials of the slow-sequence mfERG.
    Rangaswamy NV; Zhou W; Harwerth RS; Frishman LJ
    Invest Ophthalmol Vis Sci; 2006 Feb; 47(2):753-67. PubMed ID: 16431977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ganglion cell contributions to the rat full-field electroretinogram.
    Bui BV; Fortune B
    J Physiol; 2004 Feb; 555(Pt 1):153-73. PubMed ID: 14578484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram.
    Mojumder DK; Sherry DM; Frishman LJ
    J Physiol; 2008 May; 586(10):2551-80. PubMed ID: 18388140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase in electroretinogram rod-driven peak frequency of oscillatory potentials and dark-adapted responses in a cohort of myopia patients.
    Wan W; Chen Z; Lei B
    Doc Ophthalmol; 2020 Apr; 140(2):189-199. PubMed ID: 31659575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal ganglion cell ablation in guinea pigs.
    Jnawali A; Lin X; Patel NB; Frishman LJ; Ostrin LA
    Exp Eye Res; 2021 Jan; 202():108339. PubMed ID: 33127343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A procedure for recording electroretinogram and visual evoked potential in freely moving cats.
    Imai R; Sugimoto S; Ando T; Sato S
    J Toxicol Sci; 1990 Nov; 15(4):263-74. PubMed ID: 2082023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal dysfunction in a presymptomatic patient with Huntington's disease.
    Knapp J; VanNasdale DA; Ramsey K; Racine J
    Doc Ophthalmol; 2018 Jun; 136(3):213-221. PubMed ID: 29691705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A procedure for recording electroretinogram (ERG) with a contact lens-type electrode, and effect of sodium iodate on ERG in rats].
    Sugimoto S; Imawaka M; Ozaki H; Ito T; Ando T; Sato S
    J Toxicol Sci; 1994 Nov; 19 Suppl 3():531-42. PubMed ID: 7837305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new electrophysiological non-invasive method to assess retinocortical conduction time in the Dark Agouti rat through the simultaneous recording of electroretinogram and visual evoked potential.
    d'Isa R; Castoldi V; Marenna S; Santangelo R; Comi G; Leocani L
    Doc Ophthalmol; 2020 Jun; 140(3):245-255. PubMed ID: 31832898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial masking of the canine electroretinogram by oscillatory potentials. The problem of frequency bandwidth.
    Sims MH
    J Vet Intern Med; 1990; 4(1):40-2. PubMed ID: 2308121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.