These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 36934714)

  • 1. Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for repair of spinal cord injury.
    Song S; Li Y; Huang J; Cheng S; Zhang Z
    Biomater Adv; 2023 May; 148():213385. PubMed ID: 36934714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of O-GlcNAc transferase inhibitor promotes neuronal differentiation of neural stem cells in 3D bioprinted supramolecular hydrogel scaffold for spinal cord injury repair.
    Liu X; Song S; Chen Z; Gao C; Li Y; Luo Y; Huang J; Zhang Z
    Acta Biomater; 2022 Oct; 151():148-162. PubMed ID: 36002129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural stem cell-laden 3D bioprinting of polyphenol-doped electroconductive hydrogel scaffolds for enhanced neuronal differentiation.
    Song S; Liu X; Huang J; Zhang Z
    Biomater Adv; 2022 Feb; 133():112639. PubMed ID: 35527143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coaxial 3D printing of hierarchical structured hydrogel scaffolds for on-demand repair of spinal cord injury.
    Li Y; Cheng S; Wen H; Xiao L; Deng Z; Huang J; Zhang Z
    Acta Biomater; 2023 Sep; 168():400-415. PubMed ID: 37479156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D bioprinted neural tissue constructs for spinal cord injury repair.
    Liu X; Hao M; Chen Z; Zhang T; Huang J; Dai J; Zhang Z
    Biomaterials; 2021 May; 272():120771. PubMed ID: 33798962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An injectable, self-healing, electroconductive hydrogel loaded with neural stem cells and donepezil for enhancing local therapy effect of spinal cord injury.
    Liu T; Zhang Q; Li H; Cui X; Qi Z; Yang X
    J Biol Eng; 2023 Jul; 17(1):48. PubMed ID: 37488558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promoting 3D neuronal differentiation in hydrogel for spinal cord regeneration.
    Zhou P; Xu P; Guan J; Zhang C; Chang J; Yang F; Xiao H; Sun H; Zhang Z; Wang M; Hu J; Mao Y
    Colloids Surf B Biointerfaces; 2020 Oct; 194():111214. PubMed ID: 32599502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Porous SilMA Hydrogel Scaffolds Carrying Dual-Sensitive Paclitaxel Nanoparticles Promote Neuronal Differentiation for Spinal Cord Injury Repair.
    Li Z; Zhou T; Bao Z; Wu M; Mao Y
    Tissue Eng Regen Med; 2024 Aug; 21(6):809-827. PubMed ID: 39004636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Electroconductive Hydrogel Scaffold with Injectability and Biodegradability to Manipulate Neural Stem Cells for Enhancing Spinal Cord Injury Repair.
    Liu H; Feng Y; Che S; Guan L; Yang X; Zhao Y; Fang L; Zvyagin AV; Lin Q
    Biomacromolecules; 2023 Jan; 24(1):86-97. PubMed ID: 36512504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury.
    Zhou X; Shi G; Fan B; Cheng X; Zhang X; Wang X; Liu S; Hao Y; Wei Z; Wang L; Feng S
    Int J Nanomedicine; 2018; 13():6265-6277. PubMed ID: 30349249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/β-catenin signaling for spinal cord injury repair.
    Li X; Fan C; Xiao Z; Zhao Y; Zhang H; Sun J; Zhuang Y; Wu X; Shi J; Chen Y; Dai J
    Biomaterials; 2018 Nov; 183():114-127. PubMed ID: 30153562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional printing of microfiber- reinforced hydrogel loaded with oxymatrine for treating spinal cord injury.
    Song S; Zhou J; Wan J; Zhao X; Li K; Yang C; Zheng C; Wang L; Tang Y; Wang C; Liu J
    Int J Bioprint; 2023; 9(3):692. PubMed ID: 37273987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D bioprinting applications in neural tissue engineering for spinal cord injury repair.
    Bedir T; Ulag S; Ustundag CB; Gunduz O
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110741. PubMed ID: 32204049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioprinting of a Cell-Laden Conductive Hydrogel Composite.
    Spencer AR; Shirzaei Sani E; Soucy JR; Corbet CC; Primbetova A; Koppes RA; Annabi N
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30518-30533. PubMed ID: 31373791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a decellularized spinal cord matrix/GelMA composite scaffold and its effects on neuronal differentiation of neural stem cells.
    He W; Wang H; Zhang X; Mao T; Lu Y; Gu Y; Ju D; Qi L; Wang Q; Dong C
    J Biomater Sci Polym Ed; 2022 Nov; 33(16):2124-2144. PubMed ID: 35835455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional nanofibrous sponges with aligned architecture and controlled hierarchy regulate neural stem cell fate for spinal cord regeneration.
    Li Z; Qi Y; Sun L; Li Z; Chen S; Zhang Y; Ma Y; Han J; Wang Z; Zhang Y; Geng H; Huang B; Wang J; Li G; Li X; Wu S; Ni S
    Theranostics; 2023; 13(14):4762-4780. PubMed ID: 37771775
    [No Abstract]   [Full Text] [Related]  

  • 17. Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds.
    Liu C; Huang Y; Pang M; Yang Y; Li S; Liu L; Shu T; Zhou W; Wang X; Rong L; Liu B
    PLoS One; 2015; 10(3):e0117709. PubMed ID: 25803031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Dual Functional Scaffold Tethered with EGFR Antibody Promotes Neural Stem Cell Retention and Neuronal Differentiation for Spinal Cord Injury Repair.
    Xu B; Zhao Y; Xiao Z; Wang B; Liang H; Li X; Fang Y; Han S; Li X; Fan C; Dai J
    Adv Healthc Mater; 2017 May; 6(9):. PubMed ID: 28233428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosensitive Hydrogel Creates Favorable Biologic Niches to Promote Spinal Cord Injury Repair.
    Cai Z; Gan Y; Bao C; Wu W; Wang X; Zhang Z; Zhou Q; Lin Q; Yang Y; Zhu L
    Adv Healthc Mater; 2019 Jul; 8(13):e1900013. PubMed ID: 31074122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D culture of neural stem cells within conductive PEDOT layer-assembled chitosan/gelatin scaffolds for neural tissue engineering.
    Wang S; Guan S; Li W; Ge D; Xu J; Sun C; Liu T; Ma X
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():890-901. PubMed ID: 30274126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.