These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 36934906)
1. Metabolic engineering of Escherichia coli for biological production of 1, 3-Butanediol. Islam T; Nguyen-Vo TP; Gaur VK; Lee J; Park S Bioresour Technol; 2023 May; 376():128911. PubMed ID: 36934906 [TBL] [Abstract][Full Text] [Related]
2. Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli. Hwang HJ; Park JH; Kim JH; Kong MK; Kim JW; Park JW; Cho KM; Lee PC Biotechnol Bioeng; 2014 Jul; 111(7):1374-84. PubMed ID: 24449476 [TBL] [Abstract][Full Text] [Related]
3. Metabolic Engineering of Liu Y; Cen X; Liu D; Chen Z ACS Synth Biol; 2021 Aug; 10(8):1946-1955. PubMed ID: 34264647 [TBL] [Abstract][Full Text] [Related]
4. Metabolic engineering of Escherichia coli for enhanced production of 1,3-butanediol from glucose. Islam T; Nguyen-Vo TP; Cho S; Lee J; Gaur VK; Park S Bioresour Technol; 2023 Dec; 389():129814. PubMed ID: 37783239 [TBL] [Abstract][Full Text] [Related]
5. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis. Wu MY; Sung LY; Li H; Huang CH; Hu YC ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli. Lee S; Kim B; Park K; Um Y; Lee J Appl Biochem Biotechnol; 2012 Apr; 166(7):1801-13. PubMed ID: 22434350 [TBL] [Abstract][Full Text] [Related]
7. Systemic metabolic engineering of Enterobacter aerogenes for efficient 2,3-butanediol production. Lu P; Bai R; Gao T; Chen J; Jiang K; Zhu Y; Lu Y; Zhang S; Xu F; Zhao H Appl Microbiol Biotechnol; 2024 Jan; 108(1):146. PubMed ID: 38240862 [TBL] [Abstract][Full Text] [Related]
8. Metabolic Engineering of Qin N; Zhu F; Liu Y; Liu D; Chen Z ACS Synth Biol; 2024 Jan; 13(1):351-357. PubMed ID: 38110368 [TBL] [Abstract][Full Text] [Related]
9. Production of 1,4-Butanediol from Succinic Acid Using Escherichia Coli Whole-Cell Catalysis. Ni P; Gao C; Wu J; Song W; Li X; Wei W; Chen X; Liu L Chembiochem; 2024 Jun; 25(11):e202400142. PubMed ID: 38742957 [TBL] [Abstract][Full Text] [Related]
10. Application of an oxygen-inducible nar promoter system in metabolic engineering for production of biochemicals in Escherichia coli. Hwang HJ; Kim JW; Ju SY; Park JH; Lee PC Biotechnol Bioeng; 2017 Feb; 114(2):468-473. PubMed ID: 27543929 [TBL] [Abstract][Full Text] [Related]
11. [Metabolic engineering of Jiang J; Guo Y; Yang T; Rao Z Sheng Wu Gong Cheng Xue Bao; 2024 Sep; 40(9):3142-3157. PubMed ID: 39319730 [TBL] [Abstract][Full Text] [Related]
12. Increasing ATP turnover boosts productivity of 2,3-butanediol synthesis in Escherichia coli. Boecker S; Harder BJ; Kutscha R; Pflügl S; Klamt S Microb Cell Fact; 2021 Mar; 20(1):63. PubMed ID: 33750397 [TBL] [Abstract][Full Text] [Related]
13. Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor. Yamada R; Nishikawa R; Wakita K; Ogino H J Ind Microbiol Biotechnol; 2018 May; 45(5):305-311. PubMed ID: 29605870 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of (R)-1,3-butanediol production by engineered Escherichia coli using a bioreactor system with strict regulation of overall oxygen transfer coefficient and pH. Kataoka N; Vangnai AS; Ueda H; Tajima T; Nakashimada Y; Kato J Biosci Biotechnol Biochem; 2014; 78(4):695-700. PubMed ID: 25036969 [TBL] [Abstract][Full Text] [Related]
15. Enantiopure meso-2,3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2,3-butanediol dehydrogenase from Klebsiella oxytoca. Lee YG; Bae JM; Kim SJ J Biotechnol; 2022 Aug; 354():1-9. PubMed ID: 35644291 [TBL] [Abstract][Full Text] [Related]
16. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Lian J; Chao R; Zhao H Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332 [TBL] [Abstract][Full Text] [Related]
17. Bioengineering for the industrial production of 2,3-butanediol by the yeast, Saccharomyces cerevisiae. Mitsui R; Yamada R; Matsumoto T; Ogino H World J Microbiol Biotechnol; 2022 Jan; 38(3):38. PubMed ID: 35018511 [TBL] [Abstract][Full Text] [Related]
18. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium. Jantama K; Polyiam P; Khunnonkwao P; Chan S; Sangproo M; Khor K; Jantama SS; Kanchanatawee S Metab Eng; 2015 Jul; 30():16-26. PubMed ID: 25895450 [TBL] [Abstract][Full Text] [Related]
19. Achievements and Perspectives in 1,4-Butanediol Production from Engineered Microorganisms. Cheng J; Li J; Zheng L J Agric Food Chem; 2021 Sep; 69(36):10480-10485. PubMed ID: 34478293 [TBL] [Abstract][Full Text] [Related]
20. Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane. Nguyen AD; Hwang IY; Lee OK; Kim D; Kalyuzhnaya MG; Mariyana R; Hadiyati S; Kim MS; Lee EY Metab Eng; 2018 May; 47():323-333. PubMed ID: 29673960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]