BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 36935071)

  • 1. Who bears the load? IOP-induced collagen fiber recruitment over the corneoscleral shell.
    Foong TY; Hua Y; Amini R; Sigal IA
    Exp Eye Res; 2023 May; 230():109446. PubMed ID: 36935071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen fiber recruitment: A microstructural basis for the nonlinear response of the posterior pole of the eye to increases in intraocular pressure.
    Jan NJ; Sigal IA
    Acta Biomater; 2018 May; 72():295-305. PubMed ID: 29574185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2D or not 2D? Mapping the in-depth inclination of the collagen fibers of the corneoscleral shell.
    Ji F; Quinn M; Hua Y; Lee PY; Sigal IA
    Exp Eye Res; 2023 Dec; 237():109701. PubMed ID: 37898229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crimp around the globe; patterns of collagen crimp across the corneoscleral shell.
    Jan NJ; Brazile BL; Hu D; Grube G; Wallace J; Gogola A; Sigal IA
    Exp Eye Res; 2018 Jul; 172():159-170. PubMed ID: 29660327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct measurements of collagen fiber recruitment in the posterior pole of the eye.
    Lee PY; Fryc G; Gnalian J; Wang B; Hua Y; Waxman S; Zhong F; Yang B; Sigal IA
    Acta Biomater; 2024 Jan; 173():135-147. PubMed ID: 37967694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations.
    Girard MJ; Suh JK; Bottlang M; Burgoyne CF; Downs JC
    Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):5656-69. PubMed ID: 21519033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of radially aligned scleral collagen fibers in optic nerve head biomechanics.
    Hua Y; Voorhees AP; Jan NJ; Wang B; Waxman S; Schuman JS; Sigal IA
    Exp Eye Res; 2020 Oct; 199():108188. PubMed ID: 32805265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripapillary and posterior scleral mechanics--part I: development of an anisotropic hyperelastic constitutive model.
    Girard MJ; Downs JC; Burgoyne CF; Suh JK
    J Biomech Eng; 2009 May; 131(5):051011. PubMed ID: 19388781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corneoscleral stiffening increases IOP spike magnitudes during rapid microvolumetric change in the eye.
    Clayson K; Pan X; Pavlatos E; Short R; Morris H; Hart RT; Liu J
    Exp Eye Res; 2017 Dec; 165():29-34. PubMed ID: 28864177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct measurements of collagen fiber recruitment in the posterior pole of the eye.
    Lee PY; Fryc G; Gnalian J; Hua Y; Waxman S; Zhong F; Yang B; Sigal IA
    bioRxiv; 2023 May; ():. PubMed ID: 37215028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magic angle-enhanced MRI of fibrous microstructures in sclera and cornea with and without intraocular pressure loading.
    Ho LC; Sigal IA; Jan NJ; Squires A; Tse Z; Wu EX; Kim SG; Schuman JS; Chan KC
    Invest Ophthalmol Vis Sci; 2014 Aug; 55(9):5662-72. PubMed ID: 25103267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen fiber interweaving is central to sclera stiffness.
    Wang B; Hua Y; Brazile BL; Yang B; Sigal IA
    Acta Biomater; 2020 Sep; 113():429-437. PubMed ID: 32585309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peripapillary sclera architecture revisited: A tangential fiber model and its biomechanical implications.
    Voorhees AP; Jan NJ; Hua Y; Yang B; Sigal IA
    Acta Biomater; 2018 Oct; 79():113-122. PubMed ID: 30142444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Patterns and Age-Related Changes of the Collagen Crimp in the Human Cornea and Sclera.
    Gogola A; Jan NJ; Brazile B; Lam P; Lathrop KL; Chan KC; Sigal IA
    Invest Ophthalmol Vis Sci; 2018 Jun; 59(7):2987-2998. PubMed ID: 30025116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on establishment and mechanics application of finite element model of bovine eye.
    Cui YH; Huang JF; Cheng SY; Wei W; Shang L; Li N; Xiong K
    BMC Ophthalmol; 2015 Aug; 15():101. PubMed ID: 26268321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stretch-Induced Uncrimping of Equatorial Sclera Collagen Bundles.
    Jan NJ; Lee PY; Wallace J; Iasella M; Gogola A; Wang B; Sigal IA
    J Biomech Eng; 2023 May; 145(5):. PubMed ID: 36459150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripapillary and posterior scleral mechanics--part II: experimental and inverse finite element characterization.
    Girard MJ; Downs JC; Bottlang M; Burgoyne CF; Suh JK
    J Biomech Eng; 2009 May; 131(5):051012. PubMed ID: 19388782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus.
    Zvietcovich F; Nair A; Singh M; Aglyamov SR; Twa MD; Larin KV
    Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):7. PubMed ID: 33141893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scleral biomechanics in the aging monkey eye.
    Girard MJ; Suh JK; Bottlang M; Burgoyne CF; Downs JC
    Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5226-37. PubMed ID: 19494203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative mapping of collagen fiber orientation in non-glaucoma and glaucoma posterior human sclerae.
    Pijanka JK; Coudrillier B; Ziegler K; Sorensen T; Meek KM; Nguyen TD; Quigley HA; Boote C
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5258-70. PubMed ID: 22786908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.