BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36935372)

  • 1. Resistance to antibacterial antifolates in multidrug-resistant Staphylococcus aureus: prevalence estimates and genetic basis.
    Kime L; Waring T; Mohamad M; Mann BF; O'Neill AJ
    J Antimicrob Chemother; 2023 May; 78(5):1201-1210. PubMed ID: 36935372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Broad Spectrum Dihydrofolate Reductase Inhibitors Targeting Trimethoprim Resistant Enzymes Identified in Clinical Isolates of Methicillin Resistant
    Reeve SM; Si D; Krucinska J; Yan Y; Viswanathan K; Wang S; Holt GT; Frenkel MS; Ojewole AA; Estrada A; Agabiti SS; Alverson JB; Gibson ND; Priestley ND; Wiemer AJ; Donald BR; Wright DL
    ACS Infect Dis; 2019 Nov; 5(11):1896-1906. PubMed ID: 31565920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of Resistance to Folate Pathway Inhibitors in
    Podnecky NL; Rhodes KA; Mima T; Drew HR; Chirakul S; Wuthiekanun V; Schupp JM; Sarovich DS; Currie BJ; Keim P; Schweizer HP
    mBio; 2017 Sep; 8(5):. PubMed ID: 28874476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased hydrophobic interactions of iclaprim with Staphylococcus aureus dihydrofolate reductase are responsible for the increase in affinity and antibacterial activity.
    Oefner C; Bandera M; Haldimann A; Laue H; Schulz H; Mukhija S; Parisi S; Weiss L; Lociuro S; Dale GE
    J Antimicrob Chemother; 2009 Apr; 63(4):687-98. PubMed ID: 19211577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic Detection of Hemin-Inducible Trimethoprim-Sulfamethoxazole Heteroresistance in Staphylococcus aureus.
    Nurjadi D; Chanthalangsy Q; Zizmann E; Stuermer V; Moll M; Klein S; Boutin S; Heeg K; Zanger P
    Microbiol Spectr; 2021 Oct; 9(2):e0151021. PubMed ID: 34704796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence of trimethoprim resistance gene dfrG in Staphylococcus aureus causing human infection and colonization in sub-Saharan Africa and its import to Europe.
    Nurjadi D; Olalekan AO; Layer F; Shittu AO; Alabi A; Ghebremedhin B; Schaumburg F; Hofmann-Eifler J; Van Genderen PJ; Caumes E; Fleck R; Mockenhaupt FP; Herrmann M; Kern WV; Abdulla S; Grobusch MP; Kremsner PG; Wolz C; Zanger P
    J Antimicrob Chemother; 2014 Sep; 69(9):2361-8. PubMed ID: 24855123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and characterization of a novel trimethoprim-resistant dihydrofolate reductase from a nosocomial isolate of Staphylococcus aureus CM.S2 (IMCJ1454).
    Sekiguchi J; Tharavichitkul P; Miyoshi-Akiyama T; Chupia V; Fujino T; Araake M; Irie A; Morita K; Kuratsuji T; Kirikae T
    Antimicrob Agents Chemother; 2005 Sep; 49(9):3948-51. PubMed ID: 16127079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards the understanding of resistance mechanisms in clinically isolated trimethoprim-resistant, methicillin-resistant Staphylococcus aureus dihydrofolate reductase.
    Frey KM; Lombardo MN; Wright DL; Anderson AC
    J Struct Biol; 2010 Apr; 170(1):93-7. PubMed ID: 20026215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospective screening of novel antibacterial inhibitors of dihydrofolate reductase for mutational resistance.
    Frey KM; Viswanathan K; Wright DL; Anderson AC
    Antimicrob Agents Chemother; 2012 Jul; 56(7):3556-62. PubMed ID: 22491688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory properties and X-ray crystallographic study of the binding of AR-101, AR-102 and iclaprim in ternary complexes with NADPH and dihydrofolate reductase from Staphylococcus aureus.
    Oefner C; Parisi S; Schulz H; Lociuro S; Dale GE
    Acta Crystallogr D Biol Crystallogr; 2009 Aug; 65(Pt 8):751-7. PubMed ID: 19622858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonracemic Antifolates Stereoselectively Recruit Alternate Cofactors and Overcome Resistance in S. aureus.
    Keshipeddy S; Reeve SM; Anderson AC; Wright DL
    J Am Chem Soc; 2015 Jul; 137(28):8983-90. PubMed ID: 26098608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical and Molecular Epidemiology of an Emerging Panton-Valentine Leukocidin-Positive ST5 Methicillin-Resistant Staphylococcus aureus Clone in Northern Australia.
    McGuinness SL; Holt DC; Harris TM; Wright C; Baird R; Giffard PM; Bowen AC; Tong SYC
    mSphere; 2021 Feb; 6(1):. PubMed ID: 33568451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of wild-type and mutant methicillin-resistant Staphylococcus aureus dihydrofolate reductase reveal an alternate conformation of NADPH that may be linked to trimethoprim resistance.
    Frey KM; Liu J; Lombardo MN; Bolstad DB; Wright DL; Anderson AC
    J Mol Biol; 2009 Apr; 387(5):1298-308. PubMed ID: 19249312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iclaprim, a novel diaminopyrimidine with potent activity on trimethoprim sensitive and resistant bacteria.
    Schneider P; Hawser S; Islam K
    Bioorg Med Chem Lett; 2003 Dec; 13(23):4217-21. PubMed ID: 14623005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of trimethoprim/sulfamethoxazole resistance in an emerging sequence type 5 methicillin-resistant Staphylococcus aureus clone reveals discrepant resistance reporting.
    Harris TM; Bowen AC; Holt DC; Sarovich DS; Stevens K; Currie BJ; Howden BP; Carapetis JR; Giffard PM; Tong SYC
    Clin Microbiol Infect; 2018 Sep; 24(9):1027-1029. PubMed ID: 29723570
    [No Abstract]   [Full Text] [Related]  

  • 16. Determination of antimicrobial susceptibility patterns in Staphylococcus aureus strains recovered from patients at two main health facilities in Kabul, Afghanistan.
    Naimi HM; Rasekh H; Noori AZ; Bahaduri MA
    BMC Infect Dis; 2017 Nov; 17(1):737. PubMed ID: 29187146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of iclaprim on exotoxin production in methicillin-resistant and vancomycin-intermediate Staphylococcus aureus.
    Bryant AE; Gomi S; Katahira E; Huang DB; Stevens DL
    J Med Microbiol; 2019 Mar; 68(3):456-466. PubMed ID: 30676310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iclaprim activity against wild-type and corresponding thymidine kinase-deficient Staphylococcus aureus in a mouse protection model.
    Huang DB; Park JH; Murphy TM
    Eur J Clin Microbiol Infect Dis; 2019 Feb; 38(2):409-412. PubMed ID: 30483998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular analysis of an increase in trimethoprim/sulfamethoxazole-resistant MRSA reveals multiple introductions into a tertiary care hospital, Germany 2012-19.
    Nurjadi D; Klein S; Hannesen J; Heeg K; Boutin S; Zanger P
    J Antimicrob Chemother; 2021 Dec; 77(1):38-48. PubMed ID: 34529777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of mutational resistance to trimethoprim in Staphylococcus aureus by genetic and structural modelling techniques.
    Vickers AA; Potter NJ; Fishwick CW; Chopra I; O'Neill AJ
    J Antimicrob Chemother; 2009 Jun; 63(6):1112-7. PubMed ID: 19383727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.