These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36936631)

  • 1. Development of maize plant dataset for intelligent recognition and weed control.
    Olaniyi OM; Salaudeen MT; Daniya E; Abdullahi IM; Folorunso TA; Bala JA; Nuhu BK; Adedigba AP; Oluwole BI; Bankole AO; Macarthy OM
    Data Brief; 2023 Apr; 47():109030. PubMed ID: 36936631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dataset of annotated food crops and weed images for robotic computer vision control.
    Sudars K; Jasko J; Namatevs I; Ozola L; Badaukis N
    Data Brief; 2020 Aug; 31():105833. PubMed ID: 32577458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops.
    Laursen MS; Jørgensen RN; Midtiby HS; Jensen K; Christiansen MP; Giselsson TM; Mortensen AK; Jensen PK
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instance segmentation for the fine detection of crop and weed plants by precision agricultural robots.
    Champ J; Mora-Fallas A; Goëau H; Mata-Montero E; Bonnet P; Joly A
    Appl Plant Sci; 2020 Jul; 8(7):e11373. PubMed ID: 32765972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weed25: A deep learning dataset for weed identification.
    Wang P; Tang Y; Luo F; Wang L; Li C; Niu Q; Li H
    Front Plant Sci; 2022; 13():1053329. PubMed ID: 36531369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine-grained weed recognition using Swin Transformer and two-stage transfer learning.
    Wang Y; Zhang S; Dai B; Yang S; Song H
    Front Plant Sci; 2023; 14():1134932. PubMed ID: 36993854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the weed-crop competition for nutrients in maize.
    Lehoczky E; Reisinger P
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):373-80. PubMed ID: 15149132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning for detecting herbicide weed control spectrum in turfgrass.
    Jin X; Bagavathiannan M; Maity A; Chen Y; Yu J
    Plant Methods; 2022 Jul; 18(1):94. PubMed ID: 35879797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diminishing weed control exacerbates maize yield loss to adverse weather.
    Landau CA; Hager AG; Williams MM
    Glob Chang Biol; 2021 Dec; 27(23):6156-6165. PubMed ID: 34420247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrient absorbtion of weeds in maize.
    Lehoczky E; Kismányoky A; Nagy P; Németh T
    Commun Agric Appl Biol Sci; 2008; 73(4):951-7. PubMed ID: 19226848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning-based method for classification, detection, and localization of weeds in turfgrass.
    Jin X; Bagavathiannan M; McCullough PE; Chen Y; Yu J
    Pest Manag Sci; 2022 Nov; 78(11):4809-4821. PubMed ID: 35900854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weed Classification from Natural Corn Field-Multi-Plant Images Based on Shallow and Deep Learning.
    Garibaldi-Márquez F; Flores G; Mercado-Ravell DA; Ramírez-Pedraza A; Valentín-Coronado LM
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity.
    Colbach N; Darmency H; Fernier A; Granger S; Le Corre V; Messéan A
    Environ Sci Pollut Res Int; 2017 May; 24(14):13121-13135. PubMed ID: 28386883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weed Detection in Perennial Ryegrass With Deep Learning Convolutional Neural Network.
    Yu J; Schumann AW; Cao Z; Sharpe SM; Boyd NS
    Front Plant Sci; 2019; 10():1422. PubMed ID: 31737026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weed and Corn Seedling Detection in Field Based on Multi Feature Fusion and Support Vector Machine.
    Chen Y; Wu Z; Zhao B; Fan C; Shi S
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images.
    Peña JM; Torres-Sánchez J; de Castro AI; Kelly M; López-Granados F
    PLoS One; 2013; 8(10):e77151. PubMed ID: 24146963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. INTEGRATED WEED CONTROL IN MAIZE.
    Latré J; Dewitte K; Derycke V; De Roo B; Haesaert G
    Commun Agric Appl Biol Sci; 2015; 80(2):241-9. PubMed ID: 27145588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of broadleaf weeds growing in turfgrass with convolutional neural networks.
    Yu J; Sharpe SM; Schumann AW; Boyd NS
    Pest Manag Sci; 2019 Aug; 75(8):2211-2218. PubMed ID: 30672096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrients Supplementation through Organic Manures Influence the Growth of Weeds and Maize Productivity.
    Ghosh D; Brahmachari K; Skalicky M; Hossain A; Sarkar S; Dinda NK; Das A; Pramanick B; Moulick D; Brestic M; Raza MA; Barutcular C; Fahad S; Saneoka H; El Sabagh A
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33114440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Approach to the Use of Depth Cameras for Weed Volume Estimation.
    Andújar D; Dorado J; Fernández-Quintanilla C; Ribeiro A
    Sensors (Basel); 2016 Jun; 16(7):. PubMed ID: 27347972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.