These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 36936706)
1. Protective effect of L‑carnitine against oxidative stress injury in human ovarian granulosa cells. Li X; Wu X; Ma T; Zhang Y; Sun P; Qi D; Ma H Exp Ther Med; 2023 Apr; 25(4):161. PubMed ID: 36936706 [TBL] [Abstract][Full Text] [Related]
2. TRIB3 regulates FSHR expression in human granulosa cells under high levels of free fatty acids. Wang N; Si C; Xia L; Wu X; Zhao S; Xu H; Ding Z; Niu Z Reprod Biol Endocrinol; 2021 Sep; 19(1):139. PubMed ID: 34503515 [TBL] [Abstract][Full Text] [Related]
3. Protective effect of afamin protein against oxidative stress related injury in human ovarian granulosa cells. Zhang Q; Zheng X; Zhang X; Zheng L J Ovarian Res; 2024 Sep; 17(1):189. PubMed ID: 39342320 [TBL] [Abstract][Full Text] [Related]
4. Catalpol protects rat ovarian granulosa cells against oxidative stress and apoptosis through modulating the PI3K/Akt/mTOR signaling pathway. Yan J; Deng D; Wu Y; Wu K; Qu J; Li F Biosci Rep; 2020 Apr; 40(4):. PubMed ID: 32227125 [TBL] [Abstract][Full Text] [Related]
5. Arachidonic Acid in Follicular Fluid of PCOS Induces Oxidative Stress in a Human Ovarian Granulosa Tumor Cell Line (KGN) and Upregulates GDF15 Expression as a Response. Ma Y; Zheng L; Wang Y; Gao Y; Xu Y Front Endocrinol (Lausanne); 2022; 13():865748. PubMed ID: 35634503 [TBL] [Abstract][Full Text] [Related]
6. Adverse effect of superoxide-induced mitochondrial damage in granulosa cells on follicular development in mouse ovaries. Hoque SAM; Umehara T; Kawai T; Shimada M Free Radic Biol Med; 2021 Feb; 163():344-355. PubMed ID: 33385538 [TBL] [Abstract][Full Text] [Related]
7. Ferroptosis inhibitor ferrostatin‑1 alleviates homocysteine‑induced ovarian granulosa cell injury by regulating TET activity and DNA methylation. Shi Q; Liu R; Chen L Mol Med Rep; 2022 Apr; 25(4):. PubMed ID: 35169856 [TBL] [Abstract][Full Text] [Related]
8. Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy. Shen M; Jiang Y; Guan Z; Cao Y; Li L; Liu H; Sun SC Autophagy; 2017 Aug; 13(8):1364-1385. PubMed ID: 28598230 [TBL] [Abstract][Full Text] [Related]
9. Effects of hPMSCs on granulosa cell apoptosis and AMH expression and their role in the restoration of ovary function in premature ovarian failure mice. Zhang H; Luo Q; Lu X; Yin N; Zhou D; Zhang L; Zhao W; Wang D; Du P; Hou Y; Zhang Y; Yuan W Stem Cell Res Ther; 2018 Jan; 9(1):20. PubMed ID: 29386068 [TBL] [Abstract][Full Text] [Related]
10. Regulation of proliferation, apoptosis, hormone secretion and gene expression by acetyl-L-carnitine in yak (Bos grunniens) granulosa cells. Jiang XD; Liu Y; Wu JF; Gong SN; Ma Y; Zi XD Theriogenology; 2023 Jun; 203():61-68. PubMed ID: 36972666 [TBL] [Abstract][Full Text] [Related]
11. PGC-1α protects against oxidized low-density lipoprotein and luteinizing hormone-induced granulosa cells injury through ROS-p38 pathway. Liu Y; Zhai J; Chen J; Wang X; Wen T Hum Cell; 2019 Jul; 32(3):285-296. PubMed ID: 30993568 [TBL] [Abstract][Full Text] [Related]
12. Effect of luteinizing hormone concentration on transcriptome and subcellular organelle phenotype of ovarian granulosa cells. Wan YT; Liu S; Zhao SK; Luo YY; Lv YS; Qu DN; Liu MH; Li Y J Assist Reprod Genet; 2021 Apr; 38(4):809-824. PubMed ID: 33447950 [TBL] [Abstract][Full Text] [Related]
13. Tyrosine phosphatase SHP2 in ovarian granulosa cells balances follicular development by inhibiting PI3K/AKT signaling. Wei X; Zheng L; Tian Y; Wang H; Su Y; Feng G; Wang C; Lu Z J Mol Cell Biol; 2022 Sep; 14(7):. PubMed ID: 36002018 [TBL] [Abstract][Full Text] [Related]
14. Genistein protects ovarian granulosa cells from oxidative stress via cAMP-PKA signaling. Luo M; Yang ZQ; Huang JC; Wang YS; Guo B; Yue ZP Cell Biol Int; 2020 Feb; 44(2):433-445. PubMed ID: 31579960 [TBL] [Abstract][Full Text] [Related]
15. IL-15 Participates in the Pathogenesis of Polycystic Ovary Syndrome by Affecting the Activity of Granulosa Cells. Liu Y; Li Z; Wang Y; Cai Q; Liu H; Xu C; Zhang F Front Endocrinol (Lausanne); 2022; 13():787876. PubMed ID: 35250857 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial Function in Modulating Human Granulosa Cell Steroidogenesis and Female Fertility. Sreerangaraja Urs DB; Wu WH; Komrskova K; Postlerova P; Lin YF; Tzeng CR; Kao SH Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32438750 [TBL] [Abstract][Full Text] [Related]
17. Chitosan Oligosaccharides Alleviate H Yang Z; Hong W; Zheng K; Feng J; Hu C; Tan J; Zhong Z; Zheng Y Oxid Med Cell Longev; 2022; 2022():4247042. PubMed ID: 35401926 [TBL] [Abstract][Full Text] [Related]
18. Effects of vitamin D on steroidogenesis, reactive oxygen species production, and enzymatic antioxidant defense in human granulosa cells of normal and polycystic ovaries. Masjedi F; Keshtgar S; Zal F; Talaei-Khozani T; Sameti S; Fallahi S; Kazeroni M J Steroid Biochem Mol Biol; 2020 Mar; 197():105521. PubMed ID: 31705961 [TBL] [Abstract][Full Text] [Related]
19. Protective Effects of L-Carnitine Against Oxidative Injury by Hyperosmolarity in Human Corneal Epithelial Cells. Hua X; Deng R; Li J; Chi W; Su Z; Lin J; Pflugfelder SC; Li DQ Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5503-11. PubMed ID: 26284556 [TBL] [Abstract][Full Text] [Related]
20. Effects of L-carnitine against H2O2-induced oxidative stress in grass carp ovary cells (Ctenopharyngodon idellus). Wang Q; Ju X; Chen Y; Dong X; Luo S; Liu H; Zhang D Fish Physiol Biochem; 2016 Jun; 42(3):845-57. PubMed ID: 26701137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]