These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36936824)

  • 1. Parametric study on conductive patterns by low-temperature sintering of micron silver ink.
    Zhao M; Tang G; Yang S; Fu S
    RSC Adv; 2023 Mar; 13(13):8636-8645. PubMed ID: 36936824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductivity enhancement of Ag nanowire ink by decorating
    Feng J; Xing B; Xu J
    Nanotechnology; 2024 Feb; 35(17):. PubMed ID: 38262038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-temperature sintering of silver patterns on polyimide substrate printed with particle-free ink.
    Wang N; Liu Y; Guo W; Jin C; Mei L; Peng P
    Nanotechnology; 2020 Jul; 31(30):305301. PubMed ID: 32241006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inkjet Printing of Polyacrylic Acid-Coated Silver Nanoparticle Ink onto Paper with Sub-100 Micron Pixel Size.
    Mavuri A; Mayes AG; Alexander MS
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of Oxygen during Sintering of Silver Thin Films Derived by Nanoparticle Ink.
    Feng F; Hong H; Gao X; Ren T; Ma Y; Feng P
    Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Morphology on the Electrical Resistivity of Silver Nanostructure Films.
    Stewart IE; Kim MJ; Wiley BJ
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1870-1876. PubMed ID: 27981831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene-Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures.
    Liu P; Ma J; Deng S; Zeng K; Deng D; Xie W; Lu A
    Nanotechnology; 2016 Sep; 27(38):385603. PubMed ID: 27518607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave Sintering of Silver Nanoink for Radio Frequency Applications.
    Kim KS; Park BG; Jung KH; Kim JW; Jeong MY; Jung SB
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2333-7. PubMed ID: 26413662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure-assisted low-temperature sintering for paper-based writing electronics.
    Xu LY; Yang GY; Jing HY; Wei J; Han YD
    Nanotechnology; 2013 Sep; 24(35):355204. PubMed ID: 23940106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Synthesis of Silver Nanoparticles and Preparation of Conductive Ink.
    Hong GB; Luo YH; Chuang KJ; Cheng HY; Chang KC; Ma CM
    Nanomaterials (Basel); 2022 Jan; 12(1):. PubMed ID: 35010121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast near infrared sintering of silver nanoparticle ink and applications for flexible hybrid circuits.
    Gu W; Yuan W; Zhong T; Wu X; Zhou C; Lin J; Cui Z
    RSC Adv; 2018 Aug; 8(53):30215-30222. PubMed ID: 35546861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filtration-induced production of conductive/robust Cu films on cellulose paper by low-temperature sintering in air.
    Sakurai S; Akiyama Y; Kawasaki H
    R Soc Open Sci; 2018 Jul; 5(7):172417. PubMed ID: 30109061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver Shell Thickness-Dependent Conductivity of Coatings Based on Ni@Ag Core@shell Nanoparticles.
    Pajor-Świerzy A; Kozak K; Duraczyńska D; Wiertel-Pochopień A; Zawała J; Szczepanowicz K
    Nanotechnol Sci Appl; 2023; 16():73-84. PubMed ID: 38161487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of lead-free frit on conductivity of nanoparticles-aided silver paste.
    Park SH; Seo DS; Lee JK
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5331-6. PubMed ID: 19198449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-Silver Ink of High Conductivity and Low Sintering Temperature for Paper Electronics.
    Mo L; Guo Z; Wang Z; Yang L; Fang Y; Xin Z; Li X; Chen Y; Cao M; Zhang Q; Li L
    Nanoscale Res Lett; 2019 Jun; 14(1):197. PubMed ID: 31172304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics.
    Chung WH; Hwang HJ; Lee SH; Kim HS
    Nanotechnology; 2013 Jan; 24(3):035202. PubMed ID: 23263030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution Mechanism of Photonically Sintered Nano-Silver Conductive Patterns.
    Meng F; Huang J
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30769790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The exothermic reaction route of a self-heatable conductive ink for rapid processable printed electronics.
    Shin DY; Han JW; Chun S
    Nanoscale; 2014 Jan; 6(1):630-7. PubMed ID: 24253416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispensing of high concentration Ag nano-particles ink for ultra-low resistivity paper-based writing electronics.
    Wang F; Mao P; He H
    Sci Rep; 2016 Feb; 6():21398. PubMed ID: 26883558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.