These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36936824)

  • 21. Reactive Conductive Ink Capable of In Situ and Rapid Synthesis of Conductive Patterns Suitable for Inkjet Printing.
    Wang Y; Du D; Zhou Z; Xie H; Li J; Zhao Y
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31574997
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of conductive silver paste using bimodal particles.
    Han HG; Seo DS; Lee JK
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5576-80. PubMed ID: 19198502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Situ Generation of Photosensitive Silver Halide for Improving the Conductivity of Electrically Conductive Adhesives.
    Li C; Li Q; Long X; Li T; Zhao J; Zhang K; E S; Zhang J; Li Z; Yao Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29047-29054. PubMed ID: 28783299
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photo-Sintered Silver Thin Films by a High-Power UV-LED Module for Flexible Electronic Applications.
    Kim M; Jee H; Lee J
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conductive inks with a "built-in" mechanism that enables sintering at room temperature.
    Grouchko M; Kamyshny A; Mihailescu CF; Anghel DF; Magdassi S
    ACS Nano; 2011 Apr; 5(4):3354-9. PubMed ID: 21438563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silver Ink Formulations for Sinter-free Printing of Conductive Films.
    Black K; Singh J; Mehta D; Sung S; Sutcliffe CJ; Chalker PR
    Sci Rep; 2016 Feb; 6():20814. PubMed ID: 26857286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of metallic inks based on nickel-silver core-shell nanoparticles for fabrication of conductive films.
    Pajor-Świerzy A; Socha R; Pawłowski R; Warszyński P; Szczepanowicz K
    Nanotechnology; 2019 May; 30(22):225301. PubMed ID: 30721883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and Synthesis of Functional Silane-Based Silicone Resin and Application in Low-Temperature Curing Silver Conductive Inks.
    Tang Z; Liu Y; Zhang Y; Sun Z; Huang W; Chen Z; Jiang X; Zhao L
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36986031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Layer Morphology and Ink Compatibility of Silver Nanoparticle Inkjet Inks for Near-Infrared Sintering.
    Reenaers D; Marchal W; Biesmans I; Nivelle P; D'Haen J; Deferme W
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32392730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photonic Curing of Low-Cost Aqueous Silver Flake Inks for Printed Conductors with Increased Yield.
    Cronin HM; Stoeva Z; Brown M; Shkunov M; Silva SRP
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21398-21410. PubMed ID: 29863321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes.
    Yu MH; Joo SJ; Kim HS
    Nanotechnology; 2017 May; 28(20):205205. PubMed ID: 28402291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    Nanotechnology; 2013 Jul; 24(26):265702. PubMed ID: 23732285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sintering Copper Nanoparticles with Photonic Additive for Printed Conductive Patterns by Intense Pulsed Light.
    Chung WY; Lai YC; Yonezawa T; Liao YC
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31349711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interface Modified Flexible Printed Conductive Films via Ag
    Meng Y; Ma T; Pavinatto FJ; MacKenzie JD
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast and low-temperature sintering of silver complex using oximes as a potential reducing agent for solution-processible, highly conductive electrodes.
    Yoo JH; Han DS; Park SB; Chae J; Kim JM; Kwak J
    Nanotechnology; 2014 Nov; 25(46):465706. PubMed ID: 25360800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of Micro-Size Spherical Silver Particles and Their Application in Conductive Silver Paste.
    Li N; Li J; Wan X; Niu Y; Gu Y; Chen G; Ju S
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimation of the properties of silver nanoparticle ink during laser sintering via in-situ electrical resistance measurement.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    J Nanosci Nanotechnol; 2013 Sep; 13(9):5982-7. PubMed ID: 24205585
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Preparation of Ag Nanoparticle and Ink Used for Inkjet Printing of Paper Based Conductive Patterns.
    Cao L; Bai X; Lin Z; Zhang P; Deng S; Du X; Li W
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28846637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast preparation of printable highly conductive polymer nanocomposites by thermal decomposition of silver carboxylate and sintering of silver nanoparticles.
    Zhang R; Lin W; Moon KS; Wong CP
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2637-45. PubMed ID: 20735013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphological Regulation of Printed Low-Temperature Conductive Ink.
    Liu T; Guo R; Fu Y; Zhao J; Ning H; Fang Z; Liang Z; Wei X; Yao R; Peng J
    Langmuir; 2022 Aug; 38(32):9955-9966. PubMed ID: 35894171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.