These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 36937105)
1. Case report: The gait deviation index may predict neurotherapeutic effects of FES-assisted gait training in children with cerebral palsy. Behboodi A; Sansare A; Zahradka N; Lee SCK Front Rehabil Sci; 2023; 4():1002222. PubMed ID: 36937105 [TBL] [Abstract][Full Text] [Related]
2. Use of a Novel Functional Electrical Stimulation Gait Training System in 2 Adolescents With Cerebral Palsy: A Case Series Exploring Neurotherapeutic Changes. Behboodi A; Zahradka N; Alesi J; Wright H; Lee SCK Phys Ther; 2019 Jun; 99(6):739-747. PubMed ID: 31155665 [TBL] [Abstract][Full Text] [Related]
3. Artificial Walking Technologies to Improve Gait in Cerebral Palsy: Multichannel Neuromuscular Stimulation. Rose J; Cahill-Rowley K; Butler EE Artif Organs; 2017 Nov; 41(11):E233-E239. PubMed ID: 29148138 [TBL] [Abstract][Full Text] [Related]
4. Toward a hybrid exoskeleton for crouch gait in children with cerebral palsy: neuromuscular electrical stimulation for improved knee extension. Shideler BL; Bulea TC; Chen J; Stanley CJ; Gravunder AJ; Damiano DL J Neuroeng Rehabil; 2020 Sep; 17(1):121. PubMed ID: 32883297 [TBL] [Abstract][Full Text] [Related]
5. A functional electrical stimulation system improves knee control in crouch gait. Khamis S; Martikaro R; Wientroub S; Hemo Y; Hayek S J Child Orthop; 2015 Apr; 9(2):137-43. PubMed ID: 25786388 [TBL] [Abstract][Full Text] [Related]
6. The effects of functional electrical stimulation cycling on gait parameters in diplegic cerebral palsy: a single-blind randomized controlled trial. Türker D; Yakut Y; Yaşar E; Kerem Günel M; Yılmaz B; Tan AK Somatosens Mot Res; 2023 Jun; 40(2):62-71. PubMed ID: 36645809 [TBL] [Abstract][Full Text] [Related]
7. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial. Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131 [TBL] [Abstract][Full Text] [Related]
8. Effect of functional electrical stimulation, applied during walking, on gait in spastic cerebral palsy. Postans NJ; Granat MH Dev Med Child Neurol; 2005 Jan; 47(1):46-52. PubMed ID: 15686289 [TBL] [Abstract][Full Text] [Related]
9. An exploratory study of gait and functional outcomes after neuroprosthesis use in children with hemiplegic cerebral palsy. Bailes AF; Caldwell C; Clay M; Tremper M; Dunning K; Long J Disabil Rehabil; 2017 Nov; 39(22):2277-2285. PubMed ID: 27636551 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Individualized Functional Electrical Stimulation-Induced Acute Changes during Walking: A Case Series in Children with Cerebral Palsy. Zahradka N; Behboodi A; Sansare A; Lee SCK Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209917 [TBL] [Abstract][Full Text] [Related]
11. Necessity and Content of Swing Phase Gait Coordination Training Post Stroke; A Case Report. McCabe JP; Roenigk K; Daly JJ Brain Sci; 2021 Nov; 11(11):. PubMed ID: 34827497 [TBL] [Abstract][Full Text] [Related]
12. A Scoping Review of Neuromuscular Electrical Stimulation to Improve Gait in Cerebral Palsy: The Arc of Progress and Future Strategies. Mooney JA; Rose J Front Neurol; 2019; 10():887. PubMed ID: 31496986 [No Abstract] [Full Text] [Related]
13. The orthotic and therapeutic effects following daily community applied functional electrical stimulation in children with unilateral spastic cerebral palsy: a randomised controlled trial. Pool D; Valentine J; Bear N; Donnelly CJ; Elliott C; Stannage K BMC Pediatr; 2015 Oct; 15():154. PubMed ID: 26459358 [TBL] [Abstract][Full Text] [Related]
14. A randomized crossover study of functional electrical stimulation during walking in spastic cerebral palsy: the FES on participation (FESPa) trial. Moll I; Marcellis RGJ; Coenen MLP; Fleuren SM; Willems PJB; Speth LAWM; Witlox MA; Meijer K; Vermeulen RJ BMC Pediatr; 2022 Jan; 22(1):37. PubMed ID: 35027013 [TBL] [Abstract][Full Text] [Related]
15. Neurotherapeutic and neuroprosthetic effects of implanted functional electrical stimulation for ambulation after incomplete spinal cord injury. Bailey SN; Hardin EC; Kobetic R; Boggs LM; Pinault G; Triolo RJ J Rehabil Res Dev; 2010; 47(1):7-16. PubMed ID: 20437323 [TBL] [Abstract][Full Text] [Related]
16. Multi-joint gait clustering for children and youth with diplegic cerebral palsy. Kuntze G; Nettel-Aguirre A; Ursulak G; Robu I; Bowal N; Goldstein S; Emery CA PLoS One; 2018; 13(10):e0205174. PubMed ID: 30356242 [TBL] [Abstract][Full Text] [Related]
17. Functional electrical stimulation changes dynamic resources in children with spastic cerebral palsy. Ho CL; Holt KG; Saltzman E; Wagenaar RC Phys Ther; 2006 Jul; 86(7):987-1000. PubMed ID: 16813478 [TBL] [Abstract][Full Text] [Related]
18. Gait Rehabilitation Using Functional Electrical Stimulation Induces Changes in Ankle Muscle Coordination in Stroke Survivors: A Preliminary Study. Allen JL; Ting LH; Kesar TM Front Neurol; 2018; 9():1127. PubMed ID: 30619077 [No Abstract] [Full Text] [Related]
19. Neuromuscular electrical stimulation to augment lower limb exercise and mobility in individuals with spastic cerebral palsy: A scoping review. Greve KR; Joseph CF; Berry BE; Schadl K; Rose J Front Physiol; 2022; 13():951899. PubMed ID: 36111153 [No Abstract] [Full Text] [Related]
20. Functional electrical stimulation of the ankle dorsiflexors during walking in spastic cerebral palsy: a systematic review. Moll I; Vles JSH; Soudant DLHM; Witlox AMA; Staal HM; Speth LAWM; Janssen-Potten YJM; Coenen M; Koudijs SM; Vermeulen RJ Dev Med Child Neurol; 2017 Dec; 59(12):1230-1236. PubMed ID: 28815571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]