These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 36937802)
1. Quantifying international and interstate contributions to primary ambient PM Das S; Prospero JM; Chellam S Atmos Environ (1994); 2023 Jan; 292():. PubMed ID: 36937802 [TBL] [Abstract][Full Text] [Related]
2. Quantifying the contribution of long-range Saharan dust transport on particulate matter concentrations in Houston, Texas, using detailed elemental analysis. Bozlaker A; Prospero JM; Fraser MP; Chellam S Environ Sci Technol; 2013 Sep; 47(18):10179-87. PubMed ID: 23957269 [TBL] [Abstract][Full Text] [Related]
3. Coupling Sr-Nd-Hf Isotope Ratios and Elemental Analysis to Accurately Quantify North African Dust Contributions to PM Das S; Miller BV; Prospero JM; Gaston CJ; Royer HM; Blades E; Sealy P; Chellam S Environ Sci Technol; 2022 Jun; 56(12):7729-7740. PubMed ID: 35670821 [TBL] [Abstract][Full Text] [Related]
4. National Particle Component Toxicity (NPACT) Initiative: integrated epidemiologic and toxicologic studies of the health effects of particulate matter components. Lippmann M; Chen LC; Gordon T; Ito K; Thurston GD Res Rep Health Eff Inst; 2013 Oct; (177):5-13. PubMed ID: 24377209 [TBL] [Abstract][Full Text] [Related]
5. Characterization of carbonaceous fractions in PM Zhan C; Zhang J; Zheng J; Yao R; Wang P; Liu H; Xiao W; Liu X; Cao J Environ Sci Pollut Res Int; 2019 Jun; 26(17):16855-16867. PubMed ID: 29047059 [TBL] [Abstract][Full Text] [Related]
6. The contributions to long-term health-relevant particulate matter at the UK EMEP supersites between 2010 and 2013: Quantifying the mitigation challenge. Malley CS; Heal MR; Braban CF; Kentisbeer J; Leeson SR; Malcolm H; Lingard JJ; Ritchie S; Maggs R; Beccaceci S; Quincey P; Brown RJ; Twigg MM Environ Int; 2016 Oct; 95():98-111. PubMed ID: 27557590 [TBL] [Abstract][Full Text] [Related]
7. Comparative PM10-PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Rodríguez S; Querol X; Alastuey A; Viana MM; Alarcón M; Mantilla E; Ruiz CR Sci Total Environ; 2004 Jul; 328(1-3):95-113. PubMed ID: 15207576 [TBL] [Abstract][Full Text] [Related]
8. Assessing the PM Rahman MM; Begum BA; Hopke PK; Nahar K; Thurston GD Environ Pollut; 2020 Sep; 264():114798. PubMed ID: 32559884 [TBL] [Abstract][Full Text] [Related]
10. Mass concentrations and elemental analysis of PM Chatoutsidou SE; Lazaridis M Sci Total Environ; 2022 Sep; 838(Pt 1):155980. PubMed ID: 35588836 [TBL] [Abstract][Full Text] [Related]
11. Changes in ambient particulate matter during the COVID-19 and associations with biomass burning and Sahara dust in northern Colombia. Rojano R; Arregocés H; Gámez Frías E Heliyon; 2021 Dec; 7(12):e08595. PubMed ID: 34926843 [TBL] [Abstract][Full Text] [Related]
12. Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria. Talbi A; Kerchich Y; Kerbachi R; Boughedaoui M Environ Pollut; 2018 Jan; 232():252-263. PubMed ID: 28943349 [TBL] [Abstract][Full Text] [Related]
13. Sr-Nd-Hf isotopic analysis of reference materials and natural and anthropogenic particulate matter sources: Implications for accurately tracing North African dust in complex urban atmospheres. Das S; Miller BV; Prospero J; Chellam S Talanta; 2022 May; 241():123236. PubMed ID: 35074680 [TBL] [Abstract][Full Text] [Related]
14. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis. Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ; Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949 [TBL] [Abstract][Full Text] [Related]
15. Concentrations and source apportionment of PM10 and associated elemental and ionic species in a lignite-burning power generation area of southern Greece. Argyropoulos G; Grigoratos T; Voutsinas M; Samara C Environ Sci Pollut Res Int; 2013 Oct; 20(10):7214-30. PubMed ID: 23644947 [TBL] [Abstract][Full Text] [Related]
16. Biomarkers as indicators of fungal biomass in the atmosphere of São Paulo, Brazil. Emygdio APM; Andrade MF; Gonçalves FLT; Engling G; Zanetti RHS; Kumar P Sci Total Environ; 2018 Jan; 612():809-821. PubMed ID: 28881304 [TBL] [Abstract][Full Text] [Related]
17. Source apportionment of PM Ryou HG; Heo J; Kim SY Environ Pollut; 2018 Sep; 240():963-972. PubMed ID: 29910064 [TBL] [Abstract][Full Text] [Related]
18. Inter-annual variability of source contributions to PM Giannossa LC; Cesari D; Merico E; Dinoi A; Mangone A; Guascito MR; Contini D J Environ Manage; 2022 Oct; 319():115752. PubMed ID: 35982560 [TBL] [Abstract][Full Text] [Related]
19. First assessment of the PM10 and PM2.5 particulate level in the ambient air of Belgrade city. Rajsić SF; Tasić MD; Novaković VT; Tomasević MN Environ Sci Pollut Res Int; 2004; 11(3):158-64. PubMed ID: 15259698 [TBL] [Abstract][Full Text] [Related]
20. Estimating light-duty vehicles' contributions to ambient PM Das S; Chellam S Sci Total Environ; 2020 Dec; 747():141268. PubMed ID: 32799023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]