These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 36938416)
41. Flow investigation of second grade micropolar nanofluid with porous medium over an exponentially stretching sheet. Abbas Khan A; Naveed Khan M; Ahammad NA; Ashraf M; Guedri K; Galal AM J Appl Biomater Funct Mater; 2022; 20():22808000221089782. PubMed ID: 35459418 [TBL] [Abstract][Full Text] [Related]
42. Viscous dissipation and joule heating effect on MHD flow and heat transfer past a stretching sheet embedded in a porous medium. Swain BK; Parida BC; Kar S; Senapati N Heliyon; 2020 Oct; 6(10):e05338. PubMed ID: 33163653 [TBL] [Abstract][Full Text] [Related]
43. Modeling and numerical simulation of micropolar fluid over a curved surface: Keller box method. Shabbir T; Mushtaq M; Ijaz Khan M; Hayat T Comput Methods Programs Biomed; 2020 Apr; 187():105220. PubMed ID: 31790945 [TBL] [Abstract][Full Text] [Related]
44. Numerical analysis of MHD axisymmetric rotating Bodewadt rheology under viscous dissipation and ohmic heating effects. Awais M; Bibi M; Ali A; Malik MY; Nisar KS; Jamshed W Sci Rep; 2022 Jun; 12(1):10097. PubMed ID: 35710916 [TBL] [Abstract][Full Text] [Related]
45. Effect of Joule heating and thermal radiation in flow of third grade fluid over radiative surface. Hayat T; Shafiq A; Alsaedi A PLoS One; 2014; 9(1):e83153. PubMed ID: 24454694 [TBL] [Abstract][Full Text] [Related]
46. MHD micropolar hybrid nanofluid flow over a flat surface subject to mixed convection and thermal radiation. Lone SA; Alyami MA; Saeed A; Dawar A; Kumam P; Kumam W Sci Rep; 2022 Oct; 12(1):17283. PubMed ID: 36241647 [TBL] [Abstract][Full Text] [Related]
47. Mathematical formulation and computation of the dynamics of blood flow, heat and mass transfer during MRI scanning. Mwapinga A Sci Rep; 2024 Mar; 14(1):6364. PubMed ID: 38493264 [TBL] [Abstract][Full Text] [Related]
48. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect. Bachok N; Ishak A; Pop I PLoS One; 2013; 8(4):e60766. PubMed ID: 23577156 [TBL] [Abstract][Full Text] [Related]
49. Numerical treatment and global error estimation for thermal electro-osmosis effect on non-Newtonian nanofluid flow with time periodic variations. Ahmed OS; Eldabe NT; Abou-Zeid MY; El-Kalaawy OH; Moawad SM Sci Rep; 2023 Sep; 13(1):14788. PubMed ID: 37684309 [TBL] [Abstract][Full Text] [Related]
50. Dissipative MHD free convective nanofluid flow past a vertical cone under radiative chemical reaction with mass flux. Ragulkumar E; Palani G; Sambath P; Chamkha AJ Sci Rep; 2023 Feb; 13(1):2878. PubMed ID: 36808145 [TBL] [Abstract][Full Text] [Related]
51. Unsteady MHD free convection flow of an exothermic fluid in a convectively heated vertical channel filled with porous medium. Hamza MM; Shuaibu A; Kamba AS Sci Rep; 2022 Jul; 12(1):11989. PubMed ID: 35835976 [TBL] [Abstract][Full Text] [Related]
52. Nanomaterial based flow of Prandtl-Eyring (non-Newtonian) fluid using Brownian and thermophoretic diffusion with entropy generation. Khan MI; Khan SA; Hayat T; Khan MI; Alsaedi A Comput Methods Programs Biomed; 2019 Oct; 180():105017. PubMed ID: 31425940 [TBL] [Abstract][Full Text] [Related]
53. Numerical solution of heat and mass transfer using buongionro nanofluid model through a porous stretching sheet impact of variable magnetic, heat source, and temperature conductivity. Zeeshan ; Khan MS; Khan I; Eldin SM; Hira Sci Prog; 2023; 106(3):368504231201542. PubMed ID: 37731342 [TBL] [Abstract][Full Text] [Related]
54. Unsteady nanofluid flow over a cone featuring mixed convection and variable viscosity. Mustafa Z; Javed T; Hayat T; Alsaedi A Heliyon; 2023 Jun; 9(6):e16393. PubMed ID: 37332977 [TBL] [Abstract][Full Text] [Related]
55. Dual similarity solutions of MHD stagnation point flow of Casson fluid with effect of thermal radiation and viscous dissipation: stability analysis. Lund LA; Omar Z; Khan I; Baleanu D; Nisar KS Sci Rep; 2020 Sep; 10(1):15405. PubMed ID: 32958775 [TBL] [Abstract][Full Text] [Related]
56. Heat transport and entropy optimization in flow of magneto-Williamson nanomaterial with Arrhenius activation energy. Alsaadi FE; Hayat T; Khan MI; Alsaadi FE Comput Methods Programs Biomed; 2020 Jan; 183():105051. PubMed ID: 31526945 [TBL] [Abstract][Full Text] [Related]
57. Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium. Khan SU; Ali N; Abbas Z PLoS One; 2015; 10(12):e0144299. PubMed ID: 26657931 [TBL] [Abstract][Full Text] [Related]
58. Impact of suction with nanoparticles aggregation and joule heating on unsteady MHD stagnation point flow of nanofluids over horizontal cylinder. Makhdoum BM; Mahmood Z; Khan U; Fadhl BM; Khan I; Eldin SM Heliyon; 2023 Apr; 9(4):e15012. PubMed ID: 37089338 [TBL] [Abstract][Full Text] [Related]
59. Effect of viscous dissipation and induced magnetic field on an unsteady mixed convective stagnation point flow of a nonhomogenous nanofluid. Aiyashi MA; Abo-Dahab SM; Albalwi MD Sci Rep; 2023 Dec; 13(1):22529. PubMed ID: 38110455 [TBL] [Abstract][Full Text] [Related]
60. Numerical investigation of heat and mass transfer in three-dimensional MHD nanoliquid flow with inclined magnetization. Galal AM; Alharbi FM; Arshad M; Alam MM; Abdeljawad T; Al-Mdallal QM Sci Rep; 2024 Jan; 14(1):1207. PubMed ID: 38216633 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]