BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36938422)

  • 1. Removal of arsenic as a potentially toxic element from drinking water by filtration: A mini review of nanofiltration and reverse osmosis techniques.
    Pezeshki H; Hashemi M; Rajabi S
    Heliyon; 2023 Mar; 9(3):e14246. PubMed ID: 36938422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pilot study on arsenic removal from groundwater using a small-scale reverse osmosis system-Towards sustainable drinking water production.
    Schmidt SA; Gukelberger E; Hermann M; Fiedler F; Großmann B; Hoinkis J; Ghosh A; Chatterjee D; Bundschuh J
    J Hazard Mater; 2016 Nov; 318():671-678. PubMed ID: 27497227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.
    Talaeipour M; Nouri J; Hassani AH; Mahvi AH
    J Environ Health Sci Eng; 2017; 15():18. PubMed ID: 28736617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of different nanofiltration and reverse osmosis membranes for simultaneous removal of arsenic and boron from spent geothermal water.
    Jarma YA; Karaoğlu A; Tekin Ö; Baba A; Ökten HE; Tomaszewska B; Bostancı K; Arda M; Kabay N
    J Hazard Mater; 2021 Mar; 405():124129. PubMed ID: 33082019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of heavy metals from aluminum anodic oxidation wastewaters by membrane filtration.
    Ates N; Uzal N
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):22259-22272. PubMed ID: 29804256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.
    Xu P; Capito M; Cath TY
    J Hazard Mater; 2013 Sep; 260():885-91. PubMed ID: 23892312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removing arsenic and co-occurring contaminants from drinking water by full-scale ion exchange and point-of-use/point-of-entry reverse osmosis systems.
    Chen ASC; Wang L; Sorg TJ; Lytle DA
    Water Res; 2020 Apr; 172():115455. PubMed ID: 31958595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Case reports: arsenic pollution in Thailand, Bangladesh, and Hungary.
    Jones H; Visoottiviseth P; Bux MK; Födényi R; Kováts N; Borbély G; Galbács Z
    Rev Environ Contam Toxicol; 2008; 197():163-87. PubMed ID: 18983000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of transmembrane pressure and feed concentration on the retention of arsenic, chromium and cadmium from water by nanofiltration.
    Babaee Y; Mousavi SM; Danesh S; Baratian A
    J Environ Sci Eng; 2010 Jan; 52(1):1-6. PubMed ID: 21114097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane technology for pesticide removal from aquatic environment: Status quo and way forward.
    Goh PS; Ahmad NA; Wong TW; Yogarathinam LT; Ismail AF
    Chemosphere; 2022 Nov; 307(Pt 3):136018. PubMed ID: 35973494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse osmosis and nanofiltration membranes for highly efficient PFASs removal: overview, challenges and future perspectives.
    Mastropietro TF; Bruno R; Pardo E; Armentano D
    Dalton Trans; 2021 Apr; 50(16):5398-5410. PubMed ID: 33908956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface water filtration using granular media and membranes: A review.
    Hoslett J; Massara TM; Malamis S; Ahmad D; van den Boogaert I; Katsou E; Ahmad B; Ghazal H; Simons S; Wrobel L; Jouhara H
    Sci Total Environ; 2018 Oct; 639():1268-1282. PubMed ID: 29929294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.
    Yüksel S; Kabay N; Yüksel M
    J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofiltration for Arsenic Removal: Challenges, Recent Developments, and Perspectives.
    Siddique TA; Dutta NK; Roy Choudhury N
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32640523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pH and Pressure on Uranium Removal from Drinking Water Using NF/RO Membranes.
    Schulte-Herbrüggen HM; Semião AJ; Chaurand P; Graham MC
    Environ Sci Technol; 2016 Jun; 50(11):5817-24. PubMed ID: 27144287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes.
    Kimura K; Iwase T; Kita S; Watanabe Y
    Water Res; 2009 Aug; 43(15):3751-8. PubMed ID: 19564034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of arsenic from groundwater using point-of-use reverse osmosis and distilling devices.
    Lin TF; Hsiao HC; Wu JK; Hsiao HC; Yeh JH
    Environ Technol; 2002 Jul; 23(7):781-90. PubMed ID: 12164638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of polymeric membranes and processes for potable water reuse.
    Warsinger DM; Chakraborty S; Tow EW; Plumlee MH; Bellona C; Loutatidou S; Karimi L; Mikelonis AM; Achilli A; Ghassemi A; Padhye LP; Snyder SA; Curcio S; Vecitis C; Arafat HA; Lienhard JH
    Prog Polym Sci; 2016 Nov; 81():209-237. PubMed ID: 29937599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane technology as an emergency response against drinking water shortage in scenarios of dam failure.
    Guimarães RN; Moreira VR; Amaral MCS
    Chemosphere; 2022 Dec; 309(Pt 1):136618. PubMed ID: 36181845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of feed solution characteristics and membrane fouling on the removal of THMs by UF/NF/RO membranes.
    Fang C; Ou T; Wang X; Rui M; Chu W
    Chemosphere; 2020 Dec; 260():127625. PubMed ID: 32758776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.