BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36938878)

  • 1. Report on the AAPM deep-learning spectral CT Grand Challenge.
    Sidky EY; Pan X
    Med Phys; 2024 Feb; 51(2):772-785. PubMed ID: 36938878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Report on the AAPM deep-learning sparse-view CT grand challenge.
    Sidky EY; Pan X
    Med Phys; 2022 Aug; 49(8):4935-4943. PubMed ID: 35083750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral CT image reconstruction using a constrained optimization approach-An algorithm for AAPM 2022 spectral CT grand challenge and beyond.
    Hu X; Jia X
    Med Phys; 2024 May; 51(5):3376-3390. PubMed ID: 38078560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual energy CT reconstruction using the constrained one step spectral image reconstruction algorithm.
    Rizzo BM; Sidky EY; Schmidt TG
    Med Phys; 2024 Apr; 51(4):2648-2664. PubMed ID: 37837648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning for x-ray scatter correction in dedicated breast CT.
    Pautasso JJ; Caballo M; Mikerov M; Boone JM; Michielsen K; Sechopoulos I
    Med Phys; 2023 Apr; 50(4):2022-2036. PubMed ID: 36565012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quality-checked and physics-constrained deep learning method to estimate material basis images from single-kV contrast-enhanced chest CT scans.
    Li Y; Tie X; Li K; Zhang R; Qi Z; Budde A; Grist TM; Chen GH
    Med Phys; 2023 Jun; 50(6):3368-3388. PubMed ID: 36908250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning based spectral extrapolation for dual-source, dual-energy x-ray computed tomography.
    Clark DP; Schwartz FR; Marin D; Ramirez-Giraldo JC; Badea CT
    Med Phys; 2020 Sep; 47(9):4150-4163. PubMed ID: 32531114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exact dual energy material decomposition from inconsistent rays (MDIR).
    Maass C; Meyer E; Kachelriess M
    Med Phys; 2011 Feb; 38(2):691-700. PubMed ID: 21452706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potential for reduced radiation dose from deep learning-based CT image reconstruction: A comparison with filtered back projection and hybrid iterative reconstruction using a phantom.
    Lee JE; Choi SY; Hwang JA; Lim S; Lee MH; Yi BH; Cha JG
    Medicine (Baltimore); 2021 May; 100(19):e25814. PubMed ID: 34106619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stationary computed tomography with source and detector in linear symmetric geometry: Direct filtered backprojection reconstruction.
    Zhang T; Xing Y; Zhang L; Jin X; Gao H; Chen Z
    Med Phys; 2020 Jun; 47(5):2222-2236. PubMed ID: 32009236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modularized data-driven reconstruction framework for nonideal focal spot effect elimination in computed tomography.
    Zhang Z; Yu L; Zhao W; Xing L
    Med Phys; 2021 May; 48(5):2245-2257. PubMed ID: 33595900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A preliminary evaluation study of applying a deep learning image reconstruction algorithm in low-kilovolt scanning of upper abdomen.
    Wang YN; Du Y; Shi GF; Wang Q; Li RX; Qi XH; Cai XJ; Zhang X
    J Xray Sci Technol; 2021; 29(4):687-695. PubMed ID: 34092694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Implementation of Statistically-Based Image Reconstruction Algorithms for CT and Numerical Evaluation of Image Quality].
    Shinohara H; Hashimoto T
    Igaku Butsuri; 2018; 38(2):48-57. PubMed ID: 30381712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of single-source dual-energy computed tomography for urinary stone characterization and value of iterative reconstructions.
    Morsbach F; Wurnig MC; Müller D; Krauss B; Korporaal JG; Alkadhi H
    Invest Radiol; 2014 Mar; 49(3):125-30. PubMed ID: 24141741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iodine maps derived from sparse-view kV-switching dual-energy CT equipped with a deep learning reconstruction for diagnosis of hepatocellular carcinoma.
    Narita K; Nakamura Y; Higaki T; Kondo S; Honda Y; Kawashita I; Mitani H; Fukumoto W; Tani C; Chosa K; Tatsugami F; Awai K
    Sci Rep; 2023 Mar; 13(1):3603. PubMed ID: 36869102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning-based virtual noncalcium imaging in multiple myeloma using dual-energy CT.
    Gong H; Baffour FI; Glazebrook KN; Rhodes NG; Tiegs-Heiden CA; Thorne JE; Cook JM; Kumar S; Fletcher JG; McCollough CH; Leng S
    Med Phys; 2022 Oct; 49(10):6346-6358. PubMed ID: 35983992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is it possible to use low-dose deep learning reconstruction for the detection of liver metastases on CT routinely?
    Lyu P; Liu N; Harrawood B; Solomon J; Wang H; Chen Y; Rigiroli F; Ding Y; Schwartz FR; Jiang H; Lowry C; Wang L; Samei E; Gao J; Marin D
    Eur Radiol; 2023 Mar; 33(3):1629-1640. PubMed ID: 36323984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise and spatial resolution properties of a commercially available deep learning-based CT reconstruction algorithm.
    Solomon J; Lyu P; Marin D; Samei E
    Med Phys; 2020 Sep; 47(9):3961-3971. PubMed ID: 32506661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.