BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36938960)

  • 1. A comparison of two approaches to dynamic prediction: Joint modeling and landmark modeling.
    Li W; Li L; Astor BC
    Stat Med; 2023 Jun; 42(13):2101-2115. PubMed ID: 36938960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On longitudinal prediction with time-to-event outcome: Comparison of modeling options.
    Maziarz M; Heagerty P; Cai T; Zheng Y
    Biometrics; 2017 Mar; 73(1):83-93. PubMed ID: 27438160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker.
    Pickett KL; Suresh K; Campbell KR; Davis S; Juarez-Colunga E
    BMC Med Res Methodol; 2021 Oct; 21(1):216. PubMed ID: 34657597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the risk of a clinical event using longitudinal data: the generalized landmark analysis.
    Yao Y; Li L; Astor B; Yang W; Greene T
    BMC Med Res Methodol; 2023 Jan; 23(1):5. PubMed ID: 36611147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of joint modeling and landmarking for dynamic prediction under an illness-death model.
    Suresh K; Taylor JMG; Spratt DE; Daignault S; Tsodikov A
    Biom J; 2017 Nov; 59(6):1277-1300. PubMed ID: 28508545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Joint and Landmark Modeling for Predicting Cancer Progression in Men With Castration-Resistant Prostate Cancer: A Secondary Post Hoc Analysis of the PREVAIL Randomized Clinical Trial.
    Finelli A; Beer TM; Chowdhury S; Evans CP; Fizazi K; Higano CS; Kim J; Martin L; Saad F; Saarela O
    JAMA Netw Open; 2021 Jun; 4(6):e2112426. PubMed ID: 34129025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individual dynamic prediction of clinical endpoint from large dimensional longitudinal biomarker history: a landmark approach.
    Devaux A; Genuer R; Peres K; Proust-Lima C
    BMC Med Res Methodol; 2022 Jul; 22(1):188. PubMed ID: 35818025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic Kidney Disease.
    Li L; Luo S; Hu B; Greene T
    Stat Biosci; 2017 Dec; 9(2):357-378. PubMed ID: 29250207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic prediction of competing risk events using landmark sub-distribution hazard model with multiple longitudinal biomarkers.
    Wu C; Li L; Li R
    Stat Methods Med Res; 2020 Nov; 29(11):3179-3191. PubMed ID: 32419611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A copula-based approach for dynamic prediction of survival with a binary time-dependent covariate.
    Suresh K; Taylor JMG; Tsodikov A
    Stat Med; 2021 Oct; 40(23):4931-4946. PubMed ID: 34124771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Landmarking 2.0: Bridging the gap between joint models and landmarking.
    Putter H; van Houwelingen HC
    Stat Med; 2022 May; 41(11):1901-1917. PubMed ID: 35098578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-stage approach for dynamic prediction of time-to-event distributions.
    Huang X; Yan F; Ning J; Feng Z; Choi S; Cortes J
    Stat Med; 2016 Jun; 35(13):2167-82. PubMed ID: 26748812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting methods for modeling longitudinal and survival data: Framingham Heart Study.
    Ngwa JS; Cabral HJ; Cheng DM; Gagnon DR; LaValley MP; Cupples LA
    BMC Med Res Methodol; 2021 Feb; 21(1):29. PubMed ID: 33568059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Gaussian copula approach for dynamic prediction of survival with a longitudinal biomarker.
    Suresh K; Taylor JMG; Tsodikov A
    Biostatistics; 2021 Jul; 22(3):504-521. PubMed ID: 31820798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Backward joint model and dynamic prediction of survival with multivariate longitudinal data.
    Shen F; Li L
    Stat Med; 2021 Sep; 40(20):4395-4409. PubMed ID: 34018218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian joint modeling for partially linear mixed-effects quantile regression of longitudinal and time-to-event data with limit of detection, covariate measurement errors and skewness.
    Zhang H; Huang Y
    J Biopharm Stat; 2021 May; 31(3):295-316. PubMed ID: 33284096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint Models for Time-to-Event Data and Longitudinal Biomarkers of High Dimension.
    Liu M; Sun J; Herazo-Maya JD; Kaminski N; Zhao H
    Stat Biosci; 2019 Dec; 11(3):614-629. PubMed ID: 33281995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Survival analysis with time-dependent covariates subject to missing data or measurement error: Multiple Imputation for Joint Modeling (MIJM).
    Moreno-Betancur M; Carlin JB; Brilleman SL; Tanamas SK; Peeters A; Wolfe R
    Biostatistics; 2018 Oct; 19(4):479-496. PubMed ID: 29040396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of one-stage meta-analysis methods for joint longitudinal and time-to-event data through simulation and real data application.
    Sudell M; Kolamunnage-Dona R; Gueyffier F; Tudur Smith C
    Stat Med; 2019 Jan; 38(2):247-268. PubMed ID: 30209815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Landmark Linear Transformation Model for Dynamic Prediction with Application to a Longitudinal Cohort Study of Chronic Disease.
    Zhu Y; Li L; Huang X
    J R Stat Soc Ser C Appl Stat; 2019 Apr; 68(3):771-791. PubMed ID: 31467454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.