BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36938960)

  • 21. Joint modeling of cross-sectional health outcomes and longitudinal predictors via mixtures of means and variances.
    Jiang B; Elliott MR; Sammel MD; Wang N
    Biometrics; 2015 Jun; 71(2):487-97. PubMed ID: 25652674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predictive comparison of joint longitudinal-survival modeling: a case study illustrating competing approaches.
    Hanson TE; Branscum AJ; Johnson WO
    Lifetime Data Anal; 2011 Jan; 17(1):3-28. PubMed ID: 20369294
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Individualized dynamic prediction of survival with the presence of intermediate events.
    Papageorgiou G; Mokhles MM; Takkenberg JJM; Rizopoulos D
    Stat Med; 2019 Dec; 38(30):5623-5640. PubMed ID: 31667885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Latent-model robustness in joint models for a primary endpoint and a longitudinal process.
    Huang X; Stefanski LA; Davidian M
    Biometrics; 2009 Sep; 65(3):719-27. PubMed ID: 19173697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A two-stage approach for joint modeling of longitudinal measurements and competing risks data.
    Mehdizadeh P; Baghfalaki T; Esmailian M; Ganjali M
    J Biopharm Stat; 2021 Jul; 31(4):448-468. PubMed ID: 33905295
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic predictions using flexible joint models of longitudinal and time-to-event data.
    Barrett J; Su L
    Stat Med; 2017 Apr; 36(9):1447-1460. PubMed ID: 28110499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gaussian variational approximate inference for joint models of longitudinal biomarkers and a survival outcome.
    Tu J; Sun J
    Stat Med; 2023 Feb; 42(3):316-330. PubMed ID: 36443903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Copula Approach to Joint Modeling of Longitudinal Measurements and Survival Times Using Monte Carlo Expectation-Maximization with Application to AIDS Studies.
    Ganjali M; Baghfalaki T
    J Biopharm Stat; 2015; 25(5):1077-99. PubMed ID: 25372017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multivariate joint modeling to identify markers of growth and lung function decline that predict cystic fibrosis pulmonary exacerbation onset.
    Andrinopoulou ER; Clancy JP; Szczesniak RD
    BMC Pulm Med; 2020 May; 20(1):142. PubMed ID: 32429862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Joint latent class trees: A tree-based approach to modeling time-to-event and longitudinal data.
    Zhang N; Simonoff JS
    Stat Methods Med Res; 2022 Apr; 31(4):719-752. PubMed ID: 35179059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic prediction of outcome for patients with severe aortic stenosis: application of joint models for longitudinal and time-to-event data.
    Andrinopoulou ER; Rizopoulos D; Geleijnse ML; Lesaffre E; Bogers AJ; Takkenberg JJ
    BMC Cardiovasc Disord; 2015 May; 15():28. PubMed ID: 25943388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Harnessing repeated measurements of predictor variables for clinical risk prediction: a review of existing methods.
    Bull LM; Lunt M; Martin GP; Hyrich K; Sergeant JC
    Diagn Progn Res; 2020; 4():9. PubMed ID: 32671229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bayesian joint modelling of longitudinal and time to event data: a methodological review.
    Alsefri M; Sudell M; García-Fiñana M; Kolamunnage-Dona R
    BMC Med Res Methodol; 2020 Apr; 20(1):94. PubMed ID: 32336264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of 2-stage meta-analysis methods for joint longitudinal and time-to-event data through simulation and real data application.
    Sudell M; Tudur Smith C; Gueyffier F; Kolamunnage-Dona R
    Stat Med; 2018 Apr; 37(8):1227-1244. PubMed ID: 29250814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Boosting joint models for longitudinal and time-to-event data.
    Waldmann E; Taylor-Robinson D; Klein N; Kneib T; Pressler T; Schmid M; Mayr A
    Biom J; 2017 Nov; 59(6):1104-1121. PubMed ID: 28321912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Landmark risk prediction of residual life for breast cancer survival.
    Parast L; Cai T
    Stat Med; 2013 Sep; 32(20):3459-71. PubMed ID: 23494768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic prediction of time to a clinical event with sparse and irregularly measured longitudinal biomarkers.
    Zhu Y; Huang X; Li L
    Biom J; 2020 Oct; 62(6):1371-1393. PubMed ID: 32196728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes.
    Rizopoulos D; Verbeke G; Molenberghs G
    Biometrics; 2010 Mar; 66(1):20-9. PubMed ID: 19459832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Model selection and diagnostics for joint modeling of survival and longitudinal data with crossing hazard rate functions.
    Park KY; Qiu P
    Stat Med; 2014 Nov; 33(26):4532-46. PubMed ID: 25043230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.