These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 36939173)
1. Negative electrodes for supercapacitors with good performance using conductive bismuth-catecholate metal-organic frameworks. Chen S; Zhang H; Li X; Liu Y; Zhang M; Gao X; Chang X; Pu X; He C Dalton Trans; 2023 Apr; 52(15):4826-4834. PubMed ID: 36939173 [TBL] [Abstract][Full Text] [Related]
2. When Conductive MOFs Meet MnO Duan H; Zhao Z; Lu J; Hu W; Zhang Y; Li S; Zhang M; Zhu R; Pang H ACS Appl Mater Interfaces; 2021 Jul; 13(28):33083-33090. PubMed ID: 34235934 [TBL] [Abstract][Full Text] [Related]
3. The Realization of Uniform Growth of Conductive MOFs on LDHs and Their High Performance in Supercapacitors. Liu L; Lu J; Zhang Y; Pang H; Zhu R Chem Asian J; 2024 Jan; 19(1):e202300819. PubMed ID: 37973612 [TBL] [Abstract][Full Text] [Related]
4. A conductive catecholate-based framework coordinated with unsaturated bismuth boosts CO Gao Z; Hou M; Shi Y; Li L; Sun Q; Yang S; Jiang Z; Yang W; Zhang Z; Hu W Chem Sci; 2023 Jun; 14(25):6860-6866. PubMed ID: 37389251 [TBL] [Abstract][Full Text] [Related]
5. Directional Growth of Conductive Metal-Organic Framework Nanoarrays along [001] on Metal Hydroxides for Aqueous Asymmetric Supercapacitors. Lu J; Duan H; Zhang Y; Zhang G; Chen Z; Song Y; Zhu R; Pang H ACS Appl Mater Interfaces; 2022 Jun; 14(22):25878-25885. PubMed ID: 35618261 [TBL] [Abstract][Full Text] [Related]
6. Conductive Metal-Organic Frameworks for Supercapacitors. Niu L; Wu T; Chen M; Yang L; Yang J; Wang Z; Kornyshev AA; Jiang H; Bi S; Feng G Adv Mater; 2022 Dec; 34(52):e2200999. PubMed ID: 35358341 [TBL] [Abstract][Full Text] [Related]
7. Successful In Situ Growth of Conductive MOFs on 2D Cobalt-Based Compounds and Their Electrochemical Performance. Liu L; Zhang Y; Song Y; Gu Y; Pang H; Zhu R Inorg Chem; 2024 Jun; 63(22):10324-10334. PubMed ID: 38773678 [TBL] [Abstract][Full Text] [Related]
8. Recent Progress of Advanced Conductive Metal-Organic Frameworks: Precise Synthesis, Electrochemical Energy Storage Applications, and Future Challenges. Xu G; Zhu C; Gao G Small; 2022 Nov; 18(44):e2203140. PubMed ID: 36050887 [TBL] [Abstract][Full Text] [Related]
9. Insights into the electric double-layer capacitance of two-dimensional electrically conductive metal-organic frameworks. Gittins JW; Balhatchet CJ; Chen Y; Liu C; Madden DG; Britto S; Golomb MJ; Walsh A; Fairen-Jimenez D; Dutton SE; Forse AC J Mater Chem A Mater; 2021 Jul; 9(29):16006-16015. PubMed ID: 34354834 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical Sensor Based on Glassy-Carbon Electrode Modified with Dual-Ligand EC-MOFs Supported on rGO for BPA. Ye RH; Chen JY; Huang DH; Wang YJ; Chen S Biosensors (Basel); 2022 May; 12(6):. PubMed ID: 35735515 [TBL] [Abstract][Full Text] [Related]
11. Ligand-Oxidation-Based Anodic Synthesis of Oriented Films of Conductive M-Catecholate Metal-Organic Frameworks with Controllable Thickness. Song M; Jia J; Li P; Peng J; Pang X; Qi M; Xu Y; Chen L; Chi L; Lu G J Am Chem Soc; 2023 Nov; 145(47):25570-25578. PubMed ID: 37967022 [TBL] [Abstract][Full Text] [Related]
12. Enhancing the energy storage performances of metal-organic frameworks by controlling microstructure. Gittins JW; Balhatchet CJ; Fairclough SM; Forse AC Chem Sci; 2022 Aug; 13(32):9210-9219. PubMed ID: 36092998 [TBL] [Abstract][Full Text] [Related]
13. Supercapacitor with high cycling stability through electrochemical deposition of metal-organic frameworks/polypyrrole positive electrode. Liu Y; Xu N; Chen W; Wang X; Sun C; Su Z Dalton Trans; 2018 Oct; 47(38):13472-13478. PubMed ID: 30187075 [TBL] [Abstract][Full Text] [Related]
14. Understanding Electrolyte Ion Size Effects on the Performance of Conducting Metal-Organic Framework Supercapacitors. Gittins JW; Ge K; Balhatchet CJ; Taberna PL; Simon P; Forse AC J Am Chem Soc; 2024 May; 146(18):12473-12484. PubMed ID: 38716517 [TBL] [Abstract][Full Text] [Related]
15. Electrical conductivity through π-π stacking in a two-dimensional porous gallium catecholate metal-organic framework. Skorupskii G; Chanteux G; Le KN; Stassen I; Hendon CH; Dincă M Ann N Y Acad Sci; 2022 Dec; 1518(1):226-230. PubMed ID: 36183322 [TBL] [Abstract][Full Text] [Related]
16. Conductive Covalent Organic Frameworks with Conductivity- and Pre-Reduction-Enhanced Electrochemiluminescence for Ultrasensitive Biosensor Construction. Zhang JL; Yao LY; Yang Y; Liang WB; Yuan R; Xiao DR Anal Chem; 2022 Mar; 94(8):3685-3692. PubMed ID: 35156809 [TBL] [Abstract][Full Text] [Related]
17. Conjugated Copper-Catecholate Framework Electrodes for Efficient Energy Storage. Liu J; Zhou Y; Xie Z; Li Y; Liu Y; Sun J; Ma Y; Terasaki O; Chen L Angew Chem Int Ed Engl; 2020 Jan; 59(3):1081-1086. PubMed ID: 31674098 [TBL] [Abstract][Full Text] [Related]
18. Catalytic Metal Nanoparticles Embedded in Conductive Metal-Organic Frameworks for Chemiresistors: Highly Active and Conductive Porous Materials. Koo WT; Kim SJ; Jang JS; Kim DH; Kim ID Adv Sci (Weinh); 2019 Nov; 6(21):1900250. PubMed ID: 31728270 [TBL] [Abstract][Full Text] [Related]
19. Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors. Xu X; Tang J; Qian H; Hou S; Bando Y; Hossain MSA; Pan L; Yamauchi Y ACS Appl Mater Interfaces; 2017 Nov; 9(44):38737-38744. PubMed ID: 29082737 [TBL] [Abstract][Full Text] [Related]
20. Facile Synthesis of 4,4'-biphenyl Dicarboxylic Acid-Based Nickel Metal Organic Frameworks with a Tunable Pore Size towards High-Performance Supercapacitors. Zhang W; Yin H; Yu Z; Jia X; Liang J; Li G; Li Y; Wang K Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]