These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 36939173)
21. Dominant Role of Hole Transport Pathway in Achieving Record High Photoconductivity in Two-Dimensional Metal-Organic Frameworks. Wang D; Ostresh S; Streater D; He P; Nyakuchena J; Ma Q; Zhang X; Neu J; Brudvig GW; Huang J Angew Chem Int Ed Engl; 2023 Dec; 62(50):e202309505. PubMed ID: 37872121 [TBL] [Abstract][Full Text] [Related]
22. Approaches to Enhancing Electrical Conductivity of Pristine Metal-Organic Frameworks for Supercapacitor Applications. Wang T; Lei J; Wang Y; Pang L; Pan F; Chen KJ; Wang H Small; 2022 Aug; 18(32):e2203307. PubMed ID: 35843875 [TBL] [Abstract][Full Text] [Related]
23. 2D Conductive Metal-Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage. Liu J; Song X; Zhang T; Liu S; Wen H; Chen L Angew Chem Int Ed Engl; 2021 Mar; 60(11):5612-5624. PubMed ID: 32452126 [TBL] [Abstract][Full Text] [Related]
24. Integration of Triphenylene-Based Conductive Metal-Organic Frameworks into Carbon Nanotube Electrodes for Boosting Nonenzymatic Glucose Sensing. Luo Y; Shupletsov L; Ortega Vega MR; Gutiérrez-Serpa A; Khan AH; Brunner E; Senkovska I; Kaskel S ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37903405 [TBL] [Abstract][Full Text] [Related]
25. Cellulose Nanofiber @ Conductive Metal-Organic Frameworks for High-Performance Flexible Supercapacitors. Zhou S; Kong X; Zheng B; Huo F; Strømme M; Xu C ACS Nano; 2019 Aug; 13(8):9578-9586. PubMed ID: 31294960 [TBL] [Abstract][Full Text] [Related]
26. Tuning the Electrical Conductivity of a Flexible Fabric-Based Cu-HHTP Film through a Novel Redox Interaction between the Guest-Host System. Sun C; Wang W; Mu X; Zhang Y; Wang Y; Ma C; Jia Z; Zhu J; Wang C ACS Appl Mater Interfaces; 2022 Dec; 14(48):54266-54275. PubMed ID: 36399651 [TBL] [Abstract][Full Text] [Related]
27. Orientation Control of a Two-Dimensional Conductive Metal-Organic Framework Thin Film by a Pyridine Vapor-Assisted Dry Process. Chon S; Nakayama R; Iwamoto S; Kobayashi S; Shimizu R; Hitosugi T ACS Appl Mater Interfaces; 2023 Dec; 15(48):56057-56063. PubMed ID: 38009945 [TBL] [Abstract][Full Text] [Related]
28. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Sheberla D; Bachman JC; Elias JS; Sun CJ; Shao-Horn Y; Dincă M Nat Mater; 2017 Feb; 16(2):220-224. PubMed ID: 27723738 [TBL] [Abstract][Full Text] [Related]
29. Epitaxial Self-Assembly of Interfaces of 2D Metal-Organic Frameworks for Electroanalytical Detection of Neurotransmitters. Stolz RM; Kolln AF; Rocha BC; Brinks A; Eagleton AM; Mendecki L; Vashisth H; Mirica KA ACS Nano; 2022 Sep; 16(9):13869-13883. PubMed ID: 36099649 [TBL] [Abstract][Full Text] [Related]
30. Microscopic Origin of Electrochemical Capacitance in Metal-Organic Frameworks. Shin SJ; Gittins JW; Golomb MJ; Forse AC; Walsh A J Am Chem Soc; 2023 Jul; 145(26):14529-14538. PubMed ID: 37341453 [TBL] [Abstract][Full Text] [Related]
31. Understanding the Mechanism of High Capacitance in Nickel Hexaaminobenzene-Based Conductive Metal-Organic Frameworks in Aqueous Electrolytes. Lukatskaya MR; Feng D; Bak SM; To JWF; Yang XQ; Cui Y; Feldblyum JI; Bao Z ACS Nano; 2020 Nov; 14(11):15919-15925. PubMed ID: 33166110 [TBL] [Abstract][Full Text] [Related]
32. Selective Center Charge Density Enables Conductive 2D Metal-Organic Frameworks with Exceptionally High Pseudocapacitance and Energy Density for Energy Storage Devices. Cheng S; Gao W; Cao Z; Yang Y; Xie E; Fu J Adv Mater; 2022 Apr; 34(14):e2109870. PubMed ID: 35112396 [TBL] [Abstract][Full Text] [Related]
33. Conductive Metal-Organic Framework Grown on the Nickel-Based Hydroxide to Realize High-Performance Electrochemical Glucose Sensing. Zhu R; Song Y; Hu J; Zhu K; Liu L; Jiang Y; Xie L; Pang H Chemistry; 2024 Jun; 30(31):e202400982. PubMed ID: 38533890 [TBL] [Abstract][Full Text] [Related]
34. Bi-Fe chalcogenides anchored carbon matrix and structured core-shell Bi-Fe-P@Ni-P nanoarchitectures with appealing performances for supercapacitors. Khalafallah D; Zhi M; Hong Z J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1352-1363. PubMed ID: 34492471 [TBL] [Abstract][Full Text] [Related]
35. Morphology regulation of conductive metal-organic frameworks Zhang H; Yang L; Li X; Ping Y; Han J; Chen S; He C Dalton Trans; 2024 Mar; 53(10):4680-4688. PubMed ID: 38358381 [TBL] [Abstract][Full Text] [Related]
36. Hofmann Ni-Pz-Ni Metal-Organic Frameworks Decorated by Graphene Oxide Enabling Lithium Storage with Pseudocapacitance Contribution. Wang H; Zhang Y; Tang Y; Gao Y; Liu L; Yang C; Dong S Inorg Chem; 2023 Jan; 62(1):238-246. PubMed ID: 36528812 [TBL] [Abstract][Full Text] [Related]
37. Conjugated Metal-Organic Macrocycles: Synthesis, Characterization, and Electrical Conductivity. Zasada LB; Guio L; Kamin AA; Dhakal D; Monahan M; Seidler GT; Luscombe CK; Xiao DJ J Am Chem Soc; 2022 Mar; 144(10):4515-4521. PubMed ID: 35255217 [TBL] [Abstract][Full Text] [Related]
38. π-Conjugated Molecule Boosts Metal-Organic Frameworks as Efficient Oxygen Evolution Reaction Catalysts. Zhu R; Ding J; Xu Y; Yang J; Xu Q; Pang H Small; 2018 Dec; 14(50):e1803576. PubMed ID: 30326178 [TBL] [Abstract][Full Text] [Related]
39. Oxidative control over the morphology of Cu Snook KM; Zasada LB; Chehada D; Xiao DJ Chem Sci; 2022 Sep; 13(35):10472-10478. PubMed ID: 36277645 [TBL] [Abstract][Full Text] [Related]
40. Electrochemical Capacitance Traces with Interlayer Spacing in Two-dimensional Conductive Metal-Organic Frameworks. Su AY; Apostol P; Wang J; Vlad A; Dincă M Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202402526. PubMed ID: 38415379 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]