BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36939184)

  • 1. SERS-based detection of 5-
    Badillo-Ramírez I; Landeros-Rivera B; Saniger JM; Popp J; Cialla-May D
    Analyst; 2023 Apr; 148(8):1848-1857. PubMed ID: 36939184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SERS characterization of dopamine and
    Badillo-Ramírez I; Saniger JM; Popp J; Cialla-May D
    Phys Chem Chem Phys; 2021 Jun; 23(21):12158-12170. PubMed ID: 34008659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation of Ag nanoparticle based on surface acoustic wave for surface-enhanced Raman spectroscopy detection of dopamine.
    Park JO; Choi Y; Ahn HM; Lee CK; Chun H; Park YM; Kim KB
    Anal Chim Acta; 2024 Jan; 1285():342036. PubMed ID: 38057052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman, Infrared and Brillouin Spectroscopies of Biofluids for Medical Diagnostics and for Detection of Biomarkers.
    Aitekenov S; Sultangaziyev A; Abdirova P; Yussupova L; Gaipov A; Utegulov Z; Bukasov R
    Crit Rev Anal Chem; 2023; 53(7):1561-1590. PubMed ID: 35157535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive determination of dopamine levels via surface-enhanced Raman scattering of Ag nanoparticle dimers.
    Yu X; He X; Yang T; Zhao L; Chen Q; Zhang S; Chen J; Xu J
    Int J Nanomedicine; 2018; 13():2337-2347. PubMed ID: 29713165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis.
    Kamińska A; Szymborski T; Jaroch T; Zmysłowski A; Szterk A
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():208-217. PubMed ID: 29519430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study.
    Bonifacio A; Dalla Marta S; Spizzo R; Cervo S; Steffan A; Colombatti A; Sergo V
    Anal Bioanal Chem; 2014 Apr; 406(9-10):2355-65. PubMed ID: 24493335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a silver nanoparticle for sensitive surface enhanced Raman spectroscopy detection of carmine dye.
    Wu YX; Liang P; Dong QM; Bai Y; Yu Z; Huang J; Zhong Y; Dai YC; Ni D; Shu HB; Pittman CU
    Food Chem; 2017 Dec; 237():974-980. PubMed ID: 28764094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Annealing Temperature-Dependent Surface-Enhanced Raman spectroscopy on MoS
    Li M; Liu Y; Liu X; Zhang Y; Zhu T; Feng C; Zhao Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jul; 275():121159. PubMed ID: 35306305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Sensitive, Robust, and Recyclable TiO
    Wu HY; Lin HC; Liu YH; Chen KL; Wang YH; Sun YS; Hsu JC
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan-coated anisotropic silver nanoparticles as a SERS substrate for single-molecule detection.
    Potara M; Baia M; Farcau C; Astilean S
    Nanotechnology; 2012 Feb; 23(5):055501. PubMed ID: 22236478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution.
    Cheng ML; Tsai BC; Yang J
    Anal Chim Acta; 2011 Dec; 708(1-2):89-96. PubMed ID: 22093349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-metal, Multi-wavelength Surface-Enhanced Raman Spectroscopy Detection of Neurotransmitters.
    Moody AS; Sharma B
    ACS Chem Neurosci; 2018 Jun; 9(6):1380-1387. PubMed ID: 29601719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile in Situ Synthesis of Silver Nanoparticles on the Surface of Metal-Organic Framework for Ultrasensitive Surface-Enhanced Raman Scattering Detection of Dopamine.
    Jiang Z; Gao P; Yang L; Huang C; Li Y
    Anal Chem; 2015 Dec; 87(24):12177-82. PubMed ID: 26575213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme-free amplified SERS immunoassay for the ultrasensitive detection of disease biomarkers.
    Zhang XX; Xu D; Guo D; Han HX; Li DW; Ma W
    Chem Commun (Camb); 2020 Mar; 56(19):2933-2936. PubMed ID: 32040106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis.
    Sinha SS; Jones S; Pramanik A; Ray PC
    Acc Chem Res; 2016 Dec; 49(12):2725-2735. PubMed ID: 27993003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The characteristic Ag(core)Au(shell) nanoparticles as SERS substrates in detecting dopamine molecules at various pH ranges.
    Bu Y; Lee SW
    Int J Nanomedicine; 2015; 10 Spec Iss(Spec Iss):47-54. PubMed ID: 26345418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free detection of blood plasma using silver nanoparticle based surface-enhanced Raman spectroscopy for esophageal cancer screening.
    Li D; Feng S; Huang H; Chen W; Shi H; Liu N; Chen L; Chen W; Yu Y; Chen R
    J Biomed Nanotechnol; 2014 Mar; 10(3):478-84. PubMed ID: 24730243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boric acid-functionalized silver nanoparticles as SERS substrate for sensitive and rapid detection of fructose in artificial urine.
    Shen J; Chen G; Yang Z; Wu Y; Ma C; Li L; Yang T; Gu J; Gao H; Zhu C
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 288():122179. PubMed ID: 36463624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polystyrene/Ag nanoparticles as dynamic surface-enhanced Raman spectroscopy substrates for sensitive detection of organophosphorus pesticides.
    Li P; Dong R; Wu Y; Liu H; Kong L; Yang L
    Talanta; 2014 Sep; 127():269-75. PubMed ID: 24913887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.