These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 36939355)
1. STrack: A Tool to Simply Track Bacterial Cells in Microscopy Time-Lapse Images. Todorov H; Miguel Trabajo T; van der Meer JR mSphere; 2023 Apr; 8(2):e0065822. PubMed ID: 36939355 [TBL] [Abstract][Full Text] [Related]
3. LIM Tracker: a software package for cell tracking and analysis with advanced interactivity. Aragaki H; Ogoh K; Kondo Y; Aoki K Sci Rep; 2022 Feb; 12(1):2702. PubMed ID: 35177675 [TBL] [Abstract][Full Text] [Related]
4. A benchmarked comparison of software packages for time-lapse image processing of monolayer bacterial population dynamics. Ahmadi A; Courtney M; Ren C; Ingalls B Microbiol Spectr; 2024 Aug; 12(8):e0003224. PubMed ID: 38980028 [TBL] [Abstract][Full Text] [Related]
5. DeLTA 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics. O'Connor OM; Alnahhas RN; Lugagne JB; Dunlop MJ PLoS Comput Biol; 2022 Jan; 18(1):e1009797. PubMed ID: 35041653 [TBL] [Abstract][Full Text] [Related]
6. CellTracker: an automated toolbox for single-cell segmentation and tracking of time-lapse microscopy images. Hu T; Xu S; Wei L; Zhang X; Wang X Bioinformatics; 2021 Apr; 37(2):285-287. PubMed ID: 33416830 [TBL] [Abstract][Full Text] [Related]
7. A Cell Segmentation/Tracking Tool Based on Machine Learning. Deter HS; Dies M; Cameron CC; Butzin NC; Buceta J Methods Mol Biol; 2019; 2040():399-422. PubMed ID: 31432490 [TBL] [Abstract][Full Text] [Related]
8. 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images. Wen C; Miura T; Voleti V; Yamaguchi K; Tsutsumi M; Yamamoto K; Otomo K; Fujie Y; Teramoto T; Ishihara T; Aoki K; Nemoto T; Hillman EM; Kimura KD Elife; 2021 Mar; 10():. PubMed ID: 33781383 [TBL] [Abstract][Full Text] [Related]
14. A robust algorithm for segmenting and tracking clustered cells in time-lapse fluorescent microscopy. Tarnawski W; Kurtcuoglu V; Lorek P; Bodych M; Rotter J; Muszkieta M; Piwowar Ł; Poulikakos D; Majkowski M; Ferrari A IEEE J Biomed Health Inform; 2013 Jul; 17(4):862-9. PubMed ID: 25055315 [TBL] [Abstract][Full Text] [Related]
15. A novel tracking and analysis system for time-lapse cell imaging of Saccharomyces cerevisiae. Kanada F; Ogino Y; Yoshida T; Oki M Genes Genet Syst; 2020 Jul; 95(2):75-83. PubMed ID: 32249245 [TBL] [Abstract][Full Text] [Related]
16. A convolutional neural network for segmentation of yeast cells without manual training annotations. Kruitbosch HT; Mzayek Y; Omlor S; Guerra P; Milias-Argeitis A Bioinformatics; 2022 Feb; 38(5):1427-1433. PubMed ID: 34893817 [TBL] [Abstract][Full Text] [Related]
17. An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy. Buggenthin F; Marr C; Schwarzfischer M; Hoppe PS; Hilsenbeck O; Schroeder T; Theis FJ BMC Bioinformatics; 2013 Oct; 14():297. PubMed ID: 24090363 [TBL] [Abstract][Full Text] [Related]
18. 3-D active meshes: fast discrete deformable models for cell tracking in 3-D time-lapse microscopy. Dufour A; Thibeaux R; Labruyère E; Guillén N; Olivo-Marin JC IEEE Trans Image Process; 2011 Jul; 20(7):1925-37. PubMed ID: 21193379 [TBL] [Abstract][Full Text] [Related]
19. CAST: An automated segmentation and tracking tool for the analysis of transcriptional kinetics from single-cell time-lapse recordings. Blanchoud S; Nicolas D; Zoller B; Tidin O; Naef F Methods; 2015 Sep; 85():3-11. PubMed ID: 25934263 [TBL] [Abstract][Full Text] [Related]
20. MATtrack: A MATLAB-Based Quantitative Image Analysis Platform for Investigating Real-Time Photo-Converted Fluorescent Signals in Live Cells. Courtney J; Woods E; Scholz D; Hall WW; Gautier VW PLoS One; 2015; 10(10):e0140209. PubMed ID: 26485569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]