BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36939457)

  • 1. Live Cells versus Fixated Cells: Kinetic Measurements of Biomolecular Interactions with the LigandTracer Method and Surface Plasmon Resonance Microscopy.
    Dong T; Han C; Liu X; Wang Z; Wang Y; Kang Q; Wang P; Zhou F
    Mol Pharm; 2023 Apr; 20(4):2094-2104. PubMed ID: 36939457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.
    Patching SG
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):43-55. PubMed ID: 23665295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Chemical Fixatives on Kinetic Measurements of Biomolecular Interaction on Cell Membrane.
    Dong T; Wan S; Wang Y; Fu Y; Wang P
    J Membr Biol; 2024 Apr; 257(1-2):131-142. PubMed ID: 38206377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon resonance microscopy identifies glycan heterogeneity in pancreatic cancer cells that influences mucin-4 binding interactions.
    Aguilar Díaz de León JS; Thirumurty M; Ly N
    PLoS One; 2024; 19(5):e0304154. PubMed ID: 38776309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Analysis of Membrane-Protein Binding Kinetics and Cell-Surface Adhesion Using Plasmonic Scattering Microscopy.
    Zhang P; Zhou X; Jiang J; Kolay J; Wang R; Ma G; Wan Z; Wang S
    Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202209469. PubMed ID: 35922374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in zero-force and force-driven kinetics of ligand dissociation from beta-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy.
    Dettmann W; Grandbois M; André S; Benoit M; Wehle AK; Kaltner H; Gabius HJ; Gaub HE
    Arch Biochem Biophys; 2000 Nov; 383(2):157-70. PubMed ID: 11185549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-Protein Interactions: Surface Plasmon Resonance.
    Douzi B
    Methods Mol Biol; 2017; 1615():257-275. PubMed ID: 28667619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Step Ligand Immobilization and Single Sample Injection for Regeneration-Free Surface Plasmon Resonance Measurements of Biomolecular Interactions.
    Wang X; Li Z; Ly N; Zhou F
    Anal Chem; 2017 Mar; 89(6):3261-3265. PubMed ID: 28225259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. K
    Spiegelberg D; Stenberg J; Richalet P; Vanhove M
    Eur Biophys J; 2021 Oct; 50(7):979-991. PubMed ID: 34302187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring binding kinetics of surface-bound molecules using the surface plasmon resonance technique.
    Li B; Chen J; Long M
    Anal Biochem; 2008 Jun; 377(2):195-201. PubMed ID: 18384740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells.
    Wang W; Yang Y; Wang S; Nagaraj VJ; Liu Q; Wu J; Tao N
    Nat Chem; 2012 Oct; 4(10):846-53. PubMed ID: 23000999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPRD: a surface plasmon resonance database of common factors for better experimental planning.
    Tiwari PB; Bencheqroun C; Lemus M; Shaw T; Kouassi-Brou M; Alaoui A; Üren A
    BMC Mol Cell Biol; 2021 Mar; 22(1):17. PubMed ID: 33676410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of receptor-ligand interactions by surface plasmon resonance.
    Kuroki K; Maenaka K
    Methods Mol Biol; 2011; 748():83-106. PubMed ID: 21701968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics.
    Campbell CT; Kim G
    Biomaterials; 2007 May; 28(15):2380-92. PubMed ID: 17337300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time monitoring of binding events on a thermostabilized human A2A receptor embedded in a lipid bilayer by surface plasmon resonance.
    Bocquet N; Kohler J; Hug MN; Kusznir EA; Rufer AC; Dawson RJ; Hennig M; Ruf A; Huber W; Huber S
    Biochim Biophys Acta; 2015 May; 1848(5):1224-33. PubMed ID: 25725488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying protein-protein interactions using surface plasmon resonance.
    Nikolovska-Coleska Z
    Methods Mol Biol; 2015; 1278():109-38. PubMed ID: 25859946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of labeled reagents in ligand-binding assays by a surface plasmon resonance biosensor.
    Duo J; Bruno J; Piccoli S; DeSilva B; Zhang YJ
    Bioanalysis; 2017 Jan; 9(2):193-207. PubMed ID: 27960543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated electrokinetic sample focusing and surface plasmon resonance imaging system for measuring biomolecular interactions.
    Krishnamoorthy G; Carlen ET; Kohlheyer D; Schasfoort RB; van den Berg A
    Anal Chem; 2009 Mar; 81(5):1957-63. PubMed ID: 19186980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-Free Quantification of Molecular Interaction in Live Red Blood Cells by Tracking Nanometer Scale Membrane Fluctuations.
    Yao B; Yang Y; Yu N; Tao N; Wang D; Wang S; Zhang F
    Small; 2022 Jul; 18(28):e2201623. PubMed ID: 35717672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.