These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 36939738)

  • 1. High-Throughput Phenotyping: A Platform to Accelerate Crop Improvement.
    Jangra S; Chaudhary V; Yadav RC; Yadav NR
    Phenomics; 2021 Apr; 1(2):31-53. PubMed ID: 36939738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field.
    Shakoor N; Lee S; Mockler TC
    Curr Opin Plant Biol; 2017 Aug; 38():184-192. PubMed ID: 28738313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comprehensive Review of High Throughput Phenotyping and Machine Learning for Plant Stress Phenotyping.
    Gill T; Gill SK; Saini DK; Chopra Y; de Koff JP; Sandhu KS
    Phenomics; 2022 Jun; 2(3):156-183. PubMed ID: 36939773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field high-throughput phenotyping: the new crop breeding frontier.
    Araus JL; Cairns JE
    Trends Plant Sci; 2014 Jan; 19(1):52-61. PubMed ID: 24139902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge.
    Cabrera-Bosquet L; Crossa J; von Zitzewitz J; Serret MD; Araus JL
    J Integr Plant Biol; 2012 May; 54(5):312-20. PubMed ID: 22420640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image-Based High-Throughput Phenotyping in Horticultural Crops.
    Abebe AM; Kim Y; Kim J; Kim SL; Baek J
    Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean.
    Naik HS; Zhang J; Lofquist A; Assefa T; Sarkar S; Ackerman D; Singh A; Singh AK; Ganapathysubramanian B
    Plant Methods; 2017; 13():23. PubMed ID: 28405214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capturing crop adaptation to abiotic stress using image-based technologies.
    Al-Tamimi N; Langan P; Bernád V; Walsh J; Mangina E; Negrão S
    Open Biol; 2022 Jun; 12(6):210353. PubMed ID: 35728624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize.
    Zaman-Allah M; Vergara O; Araus JL; Tarekegne A; Magorokosho C; Zarco-Tejada PJ; Hornero A; Albà AH; Das B; Craufurd P; Olsen M; Prasanna BM; Cairns J
    Plant Methods; 2015; 11():35. PubMed ID: 26106438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
    Guo Q; Wu F; Pang S; Zhao X; Chen L; Liu J; Xue B; Xu G; Li L; Jing H; Chu C
    Sci China Life Sci; 2018 Mar; 61(3):328-339. PubMed ID: 28616808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling up high-throughput phenotyping for abiotic stress selection in the field.
    Smith DT; Potgieter AB; Chapman SC
    Theor Appl Genet; 2021 Jun; 134(6):1845-1866. PubMed ID: 34076731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Accuracy of High-Throughput Phenotyping From Unmanned Aerial Systems by Extracting Traits Directly From Orthorectified Images.
    Wang X; Silva P; Bello NM; Singh D; Evers B; Mondal S; Espinosa FP; Singh RP; Poland J
    Front Plant Sci; 2020; 11():587093. PubMed ID: 33193537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing Growth-Associated Molecular Markers Via High-Throughput Phenotyping in Spinach.
    Awika HO; Bedre R; Yeom J; Marconi TG; Enciso J; Mandadi KK; Jung J; Avila CA
    Plant Genome; 2019 Nov; 12(3):1-19. PubMed ID: 33016585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The field phenotyping platform's next darling: Dicotyledons.
    Li X; Xu X; Chen M; Xu M; Wang W; Liu C; Yu L; Liu W; Yang W
    Front Plant Sci; 2022; 13():935748. PubMed ID: 36092402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Plant Phenotyping for Developing Novel Biostimulants: From Lab to Field or From Field to Lab?
    Rouphael Y; Spíchal L; Panzarová K; Casa R; Colla G
    Front Plant Sci; 2018; 9():1197. PubMed ID: 30154818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning for High-Throughput Stress Phenotyping in Plants.
    Singh A; Ganapathysubramanian B; Singh AK; Sarkar S
    Trends Plant Sci; 2016 Feb; 21(2):110-124. PubMed ID: 26651918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crop breeding for a changing climate in the Pannonian region: towards integration of modern phenotyping tools.
    Kondić-Špika A; Mikić S; Mirosavljević M; Trkulja D; Marjanović Jeromela A; Rajković D; Radanović A; Cvejić S; Glogovac S; Dodig D; Božinović S; Šatović Z; Lazarević B; Šimić D; Novoselović D; Vass I; Pauk J; Miladinović D
    J Exp Bot; 2022 Sep; 73(15):5089-5110. PubMed ID: 35536688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancements in molecular marker technologies and their applications in diversity studies.
    Ramesh P; Mallikarjuna G; Sameena S; Kumar A; Gurulakshmi K; Reddy BV; Reddy PCO; Sekhar AC
    J Biosci; 2020; 45():. PubMed ID: 33097680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Phenotyping in Plant Stress Response: Methods and Potential Applications to Polyamine Field.
    Marko D; Briglia N; Summerer S; Petrozza A; Cellini F; Iannacone R
    Methods Mol Biol; 2018; 1694():373-388. PubMed ID: 29080181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.