These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36939938)

  • 1. Reconstructing Rayleigh-Bénard flows out of temperature-only measurements using Physics-Informed Neural Networks.
    Clark Di Leoni P; Agasthya L; Buzzicotti M; Biferale L
    Eur Phys J E Soft Matter; 2023 Mar; 46(3):16. PubMed ID: 36939938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physics-informed neural networks for high-resolution weather reconstruction from sparse weather stations.
    Moreno Soto Á; Cervantes A; Soler M
    Open Res Eur; 2024; 4():99. PubMed ID: 39119018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near wall Prandtl number effects on velocity gradient invariants and flow topologies in turbulent Rayleigh-Bénard convection.
    Yigit S; Hasslberger J; Klein M; Chakraborty N
    Sci Rep; 2020 Sep; 10(1):14887. PubMed ID: 32913221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Error estimates and physics informed augmentation of neural networks for thermally coupled incompressible Navier Stokes equations.
    Goraya S; Sobh N; Masud A
    Comput Mech; 2023 Aug; 72(2):267-289. PubMed ID: 37583614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generative adversarial networks to infer velocity components in rotating turbulent flows.
    Li T; Buzzicotti M; Biferale L; Bonaccorso F
    Eur Phys J E Soft Matter; 2023 May; 46(5):31. PubMed ID: 37140827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assimilation of statistical data into turbulent flows using physics-informed neural networks.
    Angriman S; Cobelli P; Mininni PD; Obligado M; Clark Di Leoni P
    Eur Phys J E Soft Matter; 2023 Mar; 46(3):13. PubMed ID: 36892684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bounds on heat flux for Rayleigh-Bénard convection between Navier-slip fixed-temperature boundaries.
    Drivas TD; Nguyen HQ; Nobili C
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2225):20210025. PubMed ID: 35465719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of Fourier-based activation function in physics-informed neural networks for patient-specific cardiovascular flows.
    Aghaee A; Khan MO
    Comput Methods Programs Biomed; 2024 Apr; 247():108081. PubMed ID: 38428251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classical 1/3 scaling of convection holds up to Ra = 10
    Iyer KP; Scheel JD; Schumacher J; Sreenivasan KR
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7594-7598. PubMed ID: 32213591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EP-PINNs: Cardiac Electrophysiology Characterisation Using Physics-Informed Neural Networks.
    Herrero Martin C; Oved A; Chowdhury RA; Ullmann E; Peters NS; Bharath AA; Varela M
    Front Cardiovasc Med; 2021; 8():768419. PubMed ID: 35187101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat transport in Rayleigh-Bénard convection and angular momentum transport in Taylor-Couette flow: a comparative study.
    Brauckmann HJ; Eckhardt B; Schumacher J
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral analysis of boundary layers in Rayleigh-Bénard convection.
    Verdoold J; van Reeuwijk M; Tummers MJ; Jonker HJ; Hanjalić K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016303. PubMed ID: 18351930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boundary layer analysis in turbulent Rayleigh-Bénard convection in air: experiment versus simulation.
    Li L; Shi N; du Puits R; Resagk C; Schumacher J; Thess A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026315. PubMed ID: 23005862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal evidence for Taylor columns in turbulent rotating Rayleigh-Bénard convection.
    King EM; Aurnou JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016313. PubMed ID: 22400664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physics informed neural network for charged particles surrounded by conductive boundaries.
    Hafezianzade F; Biagooi M; Oskoee SN
    Sci Rep; 2023 Aug; 13(1):14072. PubMed ID: 37640744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affine transformations accelerate the training of physics-informed neural networks of a one-dimensional consolidation problem.
    Mandl L; Mielke A; Seyedpour SM; Ricken T
    Sci Rep; 2023 Sep; 13(1):15566. PubMed ID: 37730743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection.
    Zhang Y; Huang YX; Jiang N; Liu YL; Lu ZM; Qiu X; Zhou Q
    Phys Rev E; 2017 Aug; 96(2-1):023105. PubMed ID: 28950509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Logarithmic spatial variations and universal f-1 power spectra of temperature fluctuations in turbulent Rayleigh-Bénard convection.
    He X; van Gils DP; Bodenschatz E; Ahlers G;
    Phys Rev Lett; 2014 May; 112(17):174501. PubMed ID: 24836253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On reversals in 2D turbulent Rayleigh-Bénard convection: Insights from embedding theory and comparison with proper orthogonal decomposition analysis.
    Faranda D; Podvin B; Sergent A
    Chaos; 2019 Mar; 29(3):033110. PubMed ID: 30927865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.