BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36940138)

  • 1. Ion permeation pathway within the internal pore of P2X receptor channels.
    Tam SW; Huffer K; Li M; Swartz KJ
    Elife; 2023 Mar; 12():. PubMed ID: 36940138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion access pathway to the transmembrane pore in P2X receptor channels.
    Kawate T; Robertson JL; Li M; Silberberg SD; Swartz KJ
    J Gen Physiol; 2011 Jun; 137(6):579-90. PubMed ID: 21624948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of residues in the first transmembrane domain of the P2X7 that regulates receptor trafficking, sensitization, and dye uptake function.
    Rupert M; Bhattacharya A; Sivcev S; Knezu M; Cimicka J; Zemkova H
    J Neurochem; 2023 Jun; 165(6):874-891. PubMed ID: 36945903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rectification of ATP-gated current of rat P2X2 and P2X7 receptors depends on the cytoplasmic N-terminus.
    Migita K; Oyabu K; Terada K
    Biochem Biophys Res Commun; 2023 Dec; 688():149213. PubMed ID: 37976814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of amino acid residues contributing to the pore of a P2X receptor.
    Rassendren F; Buell G; Newbolt A; North RA; Surprenant A
    EMBO J; 1997 Jun; 16(12):3446-54. PubMed ID: 9218787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and functional analysis of P2X1b, a new variant in rat optic nerve that regulates the P2X1 receptor in a use-dependent manner.
    Rangel-Yescas GE; Vazquez-Cuevas FG; Garay E; Arellano RO
    Acta Neurobiol Exp (Wars); 2012; 72(1):18-32. PubMed ID: 22508081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a distinct desensitisation gate in the ATP-gated P2X2 receptor.
    Stavrou A; Evans RJ; Schmid R
    Biochem Biophys Res Commun; 2020 Feb; 523(1):190-195. PubMed ID: 31843194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dilation of ion selectivity filters in cation channels.
    Huffer K; Tan XF; Fernández-Mariño AI; Dhingra S; Swartz KJ
    Trends Biochem Sci; 2024 May; 49(5):417-430. PubMed ID: 38514273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into the orthosteric inhibition of P2X receptors by non-ATP analog antagonists.
    Sheng D; Yue CX; Jin F; Wang Y; Ichikawa M; Yu Y; Guo CR; Hattori M
    Elife; 2024 Apr; 12():. PubMed ID: 38578670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P2X receptor channels show threefold symmetry in ionic charge selectivity and unitary conductance.
    Browne LE; Cao L; Broomhead HE; Bragg L; Wilkinson WJ; North RA
    Nat Neurosci; 2011 Jan; 14(1):17-8. PubMed ID: 21170052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion- and water-binding sites inside an occluded hourglass pore of a trimeric intracellular cation (TRIC) channel.
    Ou X; Guo J; Wang L; Yang H; Liu X; Sun J; Liu Z
    BMC Biol; 2017 Apr; 15(1):31. PubMed ID: 28431535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A shared mechanism for TNP-ATP recognition by members of the P2X receptor family.
    Ma XB; Yue CX; Liu Y; Yang Y; Wang J; Yang XN; Huang LD; Zhu MX; Hattori M; Li CZ; Yu Y; Guo CR
    Comput Struct Biotechnol J; 2024 Dec; 23():295-308. PubMed ID: 38173879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P2X receptor channels in chronic pain pathways.
    Bernier LP; Ase AR; Séguéla P
    Br J Pharmacol; 2018 Jun; 175(12):2219-2230. PubMed ID: 28728214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular insights into P2X signalling cascades in acute kidney injury.
    Mishra S; Shelke V; Dagar N; Lech M; Gaikwad AB
    Purinergic Signal; 2024 Jan; ():. PubMed ID: 38246970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered allostery of the left flipper domain underlies the weak ATP response of rat P2X5 receptors.
    Sun LF; Liu Y; Wang J; Huang LD; Yang Y; Cheng XY; Fan YZ; Zhu MX; Liang H; Tian Y; Wang HS; Guo CR; Yu Y
    J Biol Chem; 2019 Dec; 294(51):19589-19603. PubMed ID: 31727741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular zinc and ATP-gated P2X receptor calcium entry channels: New zinc receptors as physiological sensors and therapeutic targets.
    Schwiebert EM; Liang L; Cheng NL; Williams CR; Olteanu D; Welty EA; Zsembery A
    Purinergic Signal; 2005 Dec; 1(4):299-310. PubMed ID: 18404515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P2X receptor channels in endocrine glands.
    Stojilkovic SS; Zemkova H
    Wiley Interdiscip Rev Membr Transp Signal; 2013; 2(4):173-180. PubMed ID: 24073387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equivalence of two approaches for modeling ion permeation through a transmembrane channel with an internal binding site.
    Zhou HX
    J Chem Phys; 2011 Apr; 134(13):135101. PubMed ID: 21476774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of six-transmembrane cation channels revealed by single-particle analysis from electron microscopic images.
    Mio K; Ogura T; Sato C
    J Synchrotron Radiat; 2008 May; 15(Pt 3):211-4. PubMed ID: 18421141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Untangling Macropore Formation and Current Facilitation in P2X7.
    Cevoli F; Arnould B; Peralta FA; Grutter T
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37446075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.